精英家教網 > 高中數學 > 題目詳情
已知拋物線的焦點恰好是橢圓的右焦點,且兩條曲線的交點連線也過焦點,則橢圓的離心率為             (    )
A.B.C.D.
A
由條件知:所以點在橢圓上,所以;所以,化簡得解得
故選A
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題12分)已知橢圓的長半軸長為,且點在橢圓上.
(1)求橢圓的方程;
(2)過橢圓右焦點的直線交橢圓于兩點,若,求直線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如果橢圓的焦距、短軸長、長軸長成等差數列,則其離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若不過點的動直線與橢圓相交于、兩點,且求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.(本題滿分14分)已知橢圓的中心為坐標原點O,焦點在X軸上,橢圓短半軸長為1,動點  在直線上。
(1)求橢圓的標準方程
(2)求以線段OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作直線OM的垂線與以線段OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

方程=1表示焦點在y軸上的橢圓,則m的取值范圍是
A.-16<m<25B.-16<m<C.<m<25D.m>

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點是橢圓一點,離心率,是橢圓的兩
個焦點.
(1)求橢圓的面積;
(2)求的面積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的焦點在軸上,長軸長是短軸長的兩倍,則的值為(    )
A.B.C.2D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心是坐標原點,焦點在坐標軸上,且橢圓過點三點.
(1)求橢圓的方程;
(2)若點為橢圓上不同于的任意一點,,求內切圓的面積的最大值,并指出其內切圓圓心的坐標.

查看答案和解析>>

同步練習冊答案