橢圓的左、右焦點分別為、,直線與橢圓相交于、兩點,為坐標(biāo)原點,以為直徑的圓恰好過,求直線的方程.
解:(1)


∴所求直線方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;
(2)求弦AC中點的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若不過點的動直線與橢圓相交于兩點,且求證:直線過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程=1表示焦點在y軸上的橢圓,則m的取值范圍是
A.-16<m<25B.-16<m<C.<m<25D.m>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的左右焦點分別為,離心率為,兩焦點與上下頂點形成的菱形面積為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓交于A, B兩點,四邊形為平行四邊形,為坐標(biāo)原點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點坐標(biāo)是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在圓上任取一點,過點軸的垂線段,為垂足.當(dāng)點在圓上運動時,線段的中點形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心是坐標(biāo)原點,焦點在坐標(biāo)軸上,且橢圓過點三點.
(1)求橢圓的方程;
(2)若點為橢圓上不同于的任意一點,,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)、分別是橢圓的左、右焦點,是該橢圓上一個動點,且,
、求橢圓的方程;
、求出以點為中點的弦所在的直線方程。

查看答案和解析>>

同步練習(xí)冊答案