【題目】國家質量監(jiān)督檢驗檢疫局于2004531日發(fā)布了新的車輛駕駛人員血液、呼氣酒精含量閥值與檢驗國家標準新標準規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升為飲酒駕車,血液中的酒精含量大于或等于80毫克百毫升為醉酒駕車經過反復試驗,喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如圖:

該函數(shù)近似模型如下:,又已知剛好過1小時時測得酒精含量值為毫克百毫升根據(jù)上述條件,回答以下問題:

試計算喝1瓶啤酒多少小時血液中的酒精含量達到最大值?最大值是多少?

試計算喝一瓶啤酒后多少小時后才可以駕車?時間以整小時計算

參考數(shù)據(jù):,,

【答案】(1)喝一瓶啤酒小時血液中的酒精含量達到最大值毫克百毫升;(2)需6個小時后才可以合法駕車。

【解析】

由圖知函數(shù)取得最大值時對應的解析式,代入求得的解析式,再計算的最大值;

由題意列不等式求出x的取值范圍,即可得出結論.

解:由圖可知,當函數(shù)取得最大值時,;

此時

所以,解得;

所以,

時,函數(shù)取得最大值為,

故喝一瓶啤酒小時血液中的酒精含量達到最大值毫克百毫升;

由題意知,當車輛駕駛人員血液中的酒精小于20毫克百毫升時可以駕車,此時;

,得,

兩邊取自然對數(shù),得,

所以;

故喝啤酒后需6個小時后才可以合法駕車

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( 。

A. 4個B. 3個C. 2個D. 1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,已知a1=2,an+1=3an+2n﹣1.
(1)求證:數(shù)列{an+n}為等比數(shù)列;
(2)記bn=an+(1﹣λ)n,且數(shù)列{bn}的前n項和為Tn , 若T3為數(shù)列{Tn}中的最小項,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種新產品投放市場一段時間后,經過調研獲得了時間(天數(shù))與銷售單價(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點圖(如圖)

表中,.

(1)根據(jù)散點圖判斷,哪一個更適宜作價格關于時間的回歸方程類型?(不必說明理由)

(2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;

(3)若該產品的日銷售量(件)與時間的函數(shù)關系為),求該產品投放市場第幾天的銷售額最高?最高為多少元?(結果保留整數(shù))

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則(
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校舉辦的集體活動中,設計了如下有獎闖關游戲:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得1分、2分、3分的獎勵,游戲還規(guī)定,當選手闖過一關后,可以選擇得到相應的分數(shù),結束游戲;也可以選擇繼續(xù)闖下一關,若有任何一關沒有闖關成功,則全部分數(shù)都歸零,游戲結束。設選手甲第一關、第二關、第三關的概率分別為,,,選手選擇繼續(xù)闖關的概率均為,且各關之間闖關成功互不影響

(I)求選手甲第一關闖關成功且所得分數(shù)為零的概率

(II)設該學生所得總分數(shù)為X,X的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面五邊形是軸對稱圖形(如圖1)BC為對稱軸,ADCD,AD=AB=1,,將此五邊形沿BC折疊,使平面ABCD平面BCEF,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.

1)證明:AF平面DEC;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

同步練習冊答案