如圖,已知焦點(diǎn)在軸上的橢圓經(jīng)過(guò)點(diǎn),直線
交橢圓于不同的兩點(diǎn).

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使△是以為直角的直角三角形,若存在,求出的值,若不存,請(qǐng)說(shuō)明理由.

(1)(2)(3)見(jiàn)解析

解析試題分析:(1)設(shè)出橢圓方程的標(biāo)準(zhǔn)形式,由離心率的值及橢圓過(guò)點(diǎn)(4,1)求出待定系數(shù),得到橢圓的標(biāo)準(zhǔn)方程.
(2)把直線方程代入橢圓的方程,由判別式大于0,求出m的范圍即可;
(3)對(duì)于存在性問(wèn)題,可先假設(shè)存在,即假設(shè)存在實(shí)數(shù)m滿足題意,再利用△ABM為直角三角形,結(jié)合向量垂直的條件求出m,若出現(xiàn)矛盾,則說(shuō)明假設(shè)不成立,即不存在;否則存在.
試題解析:解:(1)依題意,解得,    2分
所以橢圓的標(biāo)準(zhǔn)方程是.      3分
(2)由,           4分
直線與橢圓有兩個(gè)不同的交點(diǎn),
            6分
解得                          7分
(3)假設(shè)存在實(shí)數(shù)滿足題意,則由為直角得,        8分
設(shè),由(2)得,    9分
,   10分
,             11分

             12分
   13分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/57/c/gnev42.png" style="vertical-align:middle;" />,
綜上所述,存在實(shí)數(shù)使△為直角三角形.    14分
考點(diǎn):1.直線與圓錐曲線的綜合問(wèn)題;2.橢圓的標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)的右焦點(diǎn)為,且橢圓過(guò)點(diǎn)
(1)求橢圓的方程;
(2)設(shè)斜率為的直線與橢圓交于不同兩點(diǎn),以線段為底邊作等腰三角形,其中頂點(diǎn)的坐標(biāo)為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是橢圓上兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)當(dāng)關(guān)于點(diǎn)對(duì)稱時(shí),求證:;
(2)當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),求證:不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線上的任意一點(diǎn)到該拋物線焦點(diǎn)的距離比該點(diǎn)到軸的距離多1.

(1)求的值;
(2)如圖所示,過(guò)定點(diǎn)(2,0)且互相垂直的兩條直線分別與該拋物線分別交于、、四點(diǎn).
(i)求四邊形面積的最小值;
(ii)設(shè)線段、的中點(diǎn)分別為、兩點(diǎn),試問(wèn):直線是否過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),離心率為
(1)求橢圓的方程;
(2)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓的右頂點(diǎn).直線與直線分別與軸交于點(diǎn),試問(wèn)以線段為直徑的圓是否過(guò)軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的焦點(diǎn)在軸上,離心率為,對(duì)稱軸為坐標(biāo)軸,且經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)直線與橢圓相交于兩點(diǎn), 為原點(diǎn),在上分別存在異于點(diǎn)的點(diǎn)、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)、分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓,經(jīng)過(guò)橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)圓外一點(diǎn)傾斜角為的直線交橢圓于C,D兩點(diǎn),

(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案