【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖.

(1)求頻率分布直方圖中a的值;

(2)估計(jì)總體中成績落在[50,60)中的學(xué)生人數(shù);

(3)根據(jù)頻率分布直方圖估計(jì)20名學(xué)生數(shù)學(xué)考試成績的眾數(shù),平均數(shù);

【答案】(1)0.005 (2)2人 (3)75 分 ,76.5分

【解析】

1)由頻率分布直方圖列方程能求出a

2)由頻率分布直方圖得成績落在[50,60)中的頻率為0.1,由此能估計(jì)總體中成績落在[50,60)中的學(xué)生人數(shù);

3)根據(jù)頻率分布直方圖能估計(jì)20名學(xué)生數(shù)學(xué)考試成績的眾數(shù)和平均數(shù).

1)由頻率分布直方圖得:

2a+3a+7a+6a+2a)×101,

解得a0.005

2)由頻率分布直方圖得成績落在[50,60)中的頻率為2a×100.1

∴估計(jì)總體中成績落在[50,60)中的學(xué)生人數(shù)為:

20×0.12人.

3)根據(jù)頻率分布直方圖估計(jì)20名學(xué)生數(shù)學(xué)考試成績的眾數(shù)為:75,

平均數(shù)為:2×0.005×10×55+3×0.005×10×65+7×0.005×10×75+6×0.005×10×85+2×0.005×10×9576.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)廠家生產(chǎn)一種產(chǎn)品的固定成本為4萬元,并且每生產(chǎn)1百臺產(chǎn)品需增加投入0.8萬元.已知銷售收入(萬元)滿足(其中是該產(chǎn)品的月產(chǎn)量,單位:百臺),假定生產(chǎn)的產(chǎn)品都能賣掉,請完成下列問題:

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為, ,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.

(1)求審核過程中只通過兩道程序的概率;

(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,焦距為,拋物線 的焦點(diǎn)是橢圓的頂點(diǎn).

(1)求的標(biāo)準(zhǔn)方程;

(2)上不同于的兩點(diǎn), 滿足,且直線相切,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1F2分別為雙曲線的左、右焦點(diǎn),若雙曲線左支上存在一點(diǎn)P,使得=8a,則雙曲線的離心率的取值范圍是__________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)滿足f(logax)=·(x)(其中a>0且a≠1).

(1)求函數(shù)f(x)的解析式,并判斷其奇偶性和單調(diào)性;

(2)當(dāng)x∈(-∞,2)時(shí),f(x)-4的值恒為負(fù)數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心坐標(biāo),直線被圓截得弦長為.

1)求圓的方程;

2)從圓外一點(diǎn)向圓引切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)程為為參數(shù)),設(shè)直線的交點(diǎn)為,當(dāng)變化時(shí)點(diǎn)的軌跡為曲線.

(1)求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

1)若,,,求的取值范圍;

2)若是公比為的等比數(shù)列,,,,求的取值范圍;

3)若成等差數(shù)列,且,求正整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案