【題目】已知函數(shù)

1)若函數(shù)處的切線垂直于軸,求實(shí)數(shù)的值;

2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;

3)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.

【答案】;(的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;()實(shí)數(shù)的取值范圍為

【解析】

試題此題考查導(dǎo)數(shù)求解的綜合問(wèn)題()應(yīng)用導(dǎo)數(shù)的幾何意義,首先求函數(shù)的導(dǎo)數(shù),以及在切點(diǎn)處的導(dǎo)數(shù),然后根據(jù),求解參數(shù);()利用導(dǎo)數(shù)求函數(shù)的單調(diào)性的方法,第一步,根據(jù)上一問(wèn)得到函數(shù)的導(dǎo)數(shù),將導(dǎo)數(shù)化簡(jiǎn),第二步,求解,和的不等式,就是對(duì)應(yīng)函數(shù)的單調(diào)區(qū)間,注意函數(shù)的定義域;()處理此類(lèi)不等式恒成立的問(wèn)題,有兩種方程,第一種,反解參數(shù),轉(zhuǎn)化為求函數(shù)的最小值,同樣是求函數(shù)的導(dǎo)數(shù),求函數(shù)的單調(diào)區(qū)間,確定最小值;第二種,轉(zhuǎn)化為求,所以方法就是求函數(shù)的導(dǎo)數(shù),討論函數(shù)的極值點(diǎn)的存在問(wèn)題,確定單調(diào)性,求函數(shù)的最小值大于0.

試題解析:(

由題意得,4

時(shí),,定義域?yàn)?/span>,

當(dāng)時(shí),,

當(dāng)時(shí),,

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為8

)解法一:由,得時(shí)恒成立,

,則-10

,則

所以為增函數(shù),

,故為增函數(shù).,

所以,即實(shí)數(shù)的取值范圍為12

解法二:

,則,

)當(dāng),即時(shí),恒成立,

因?yàn)?/span>,所以上單調(diào)遞增,

,即,所以

)當(dāng),即時(shí),恒成立,

因?yàn)?/span>,所以上單調(diào)遞增,

,即,所以;

)當(dāng),即時(shí),

方程有兩個(gè)實(shí)數(shù)根

,兩個(gè)根,

當(dāng)時(shí),,所以上單調(diào)遞增,

,即,所以;

,的兩個(gè)根,

因?yàn)?/span>,且是連續(xù)不斷的函數(shù)

所以總存在,使得,不滿足題意.

綜上,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,用總長(zhǎng)為定值l的籬笆圍成長(zhǎng)方形的場(chǎng)地,以墻為一邊,并用平行于一邊的籬笆隔開(kāi).

1)設(shè)場(chǎng)地面積為y,垂直于墻的邊長(zhǎng)為x,試用解析式將y表示成x的函數(shù),并確定這個(gè)函數(shù)的定義域;

2)怎樣圍才能使得場(chǎng)地的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角中,,,點(diǎn)在線段.

(Ⅰ) ,求的長(zhǎng);

)若點(diǎn)在線段上,且,問(wèn):當(dāng)取何值時(shí),的面積最?并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程為,若的公共點(diǎn)為,且是曲線的中心,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面 是邊長(zhǎng)為1的正方形,平面,與平面所成角為60°.

1)求證: 平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教育主管部門(mén)到一所中學(xué)檢查高三年級(jí)學(xué)生的體質(zhì)健康情況,從中抽取了名學(xué)生的體質(zhì)測(cè)試成績(jī),得到的頻率分布直方圖如圖1所示,樣本中前三組學(xué)生的原始成績(jī)按性別分類(lèi)所得的莖葉圖如圖2所示.

(Ⅰ)求, , 的值;

(Ⅱ)估計(jì)該校高三學(xué)生體質(zhì)測(cè)試成績(jī)的平均數(shù)和中位數(shù);

(Ⅲ)若從成績(jī)?cè)?/span>的學(xué)生中隨機(jī)抽取兩人重新進(jìn)行測(cè)試,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間中,下列命題正確的是

A.如果一個(gè)角的兩邊和另一角的兩邊分別平行,那么這兩個(gè)角相等

B.兩條異面直線所成的有的范圍是

C.如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行

D.如果一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸,橢圓與直線相切于點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于、兩點(diǎn)( 不是長(zhǎng)軸端點(diǎn)),且以為直徑的圓過(guò)橢圓軸正半軸上的頂點(diǎn),求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,平面平面 的中點(diǎn).

1)求證: 平面;

2)若, , ,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案