【題目】如圖,在等腰直角中,,,點在線段.

(Ⅰ) ,求的長;

)若點在線段上,且,問:當取何值時,的面積最小?并求出面積的最小值.

【答案】(Ⅰ))當時,的最大值為,此時的面積取到最小值.即2時,的面積的最小值為

【解析】

:(1)△OMP,∠OPM=45°,OM=,OP=2,

由余弦定理得,OM2=OP2+MP2-2OP·MP·cos45°,

MP2-4MP+3=0,

解得MP=1MP=3.

(2)設(shè)∠POM=α,0°≤α≤60°,

△OMP,由正弦定理,

=,

所以OM=,

同理ON=.

SOMN=OM·ON·sin∠MON

=×

=

=

=

=

=

=.

因為0°≤α≤60°,

30°≤2α+30°≤150°,

所以當α=30°,sin(2α+30°)的最大值為1,

此時△OMN的面積取到最小值.

∠POM=30°,△OMN的面積的最小值為8-4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了加強中學生實踐、創(chuàng)新和團隊建設(shè)能力的培養(yǎng),促進教育教學改革,市教育局舉辦了全市中學生創(chuàng)新知識競賽,某中學舉行了選拔賽,共有150名學生參加,為了了解成績情況,從中抽取50名學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,請你根據(jù)尚未完成的頻率分布表,解答下列問題:

(1)完成頻率分布表(直接寫出結(jié)果);

(2)若成績在90.5分以上的學生獲一等獎,試估計全校獲一等獎的人數(shù),現(xiàn)在從全校所有獲一等獎的同學中隨機抽取2名同學代表學校參加競賽,某班共有2名同學榮獲一等獎,求該班同學恰有1人參加競賽的概率.

分組

頻數(shù)

頻率

第1組

[60.5,70.5)

0.26

第2組

[70.5,80.5)

17

第3組

[80.5,90.5)

18

0.36

第4組

[90.5,100.5]

合計

50

1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黨的十八大以來,我國精準扶貧已經(jīng)實施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實現(xiàn)減少貧困人口1000萬人以上的目標,力爭2020年在現(xiàn)行標準下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當前扶貧領(lǐng)域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用表示,單位:萬戶)進行取樣,統(tǒng)計結(jié)果如圖所示,從20166月底到20196月底的共進行了七次統(tǒng)計,統(tǒng)計時間用序號表示,例如:201612月底(時間序號為2)貧困戶為5.2萬戶.

(1)求關(guān)于的線性回歸方程,并預測到202012月底,該市能否實現(xiàn)貧困戶全部脫貧;

(2)為盡快打贏脫貧攻堅戰(zhàn),該市扶貧辦在20196月底時,對全市貧困戶隨機抽取了100戶貧困戶,對每個家庭最主要經(jīng)濟收入來源進行抽樣調(diào)查,統(tǒng)計結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對全市所有貧困戶中,家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶,每一名農(nóng)業(yè)技術(shù)人員對口幫扶貧困戶90戶,則該市應分別安排多少農(nóng)業(yè)技術(shù)人員對家庭最主要經(jīng)濟收入來源為養(yǎng)殖收入和種植收入的貧困戶進行對口幫扶?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,公園內(nèi)有一塊邊長為的正三角形空地,擬改建成花園,并在其中建一直道方便花園管理. 設(shè)分別在上,且均分三角形的面積.

1)設(shè)),,試將表示為的函數(shù)關(guān)系式;

2)若是灌溉水管,為節(jié)約成本,希望其最短,的位置應在哪里?若是參觀路線,希望其最長,的位置應在哪里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,,則下面結(jié)論正確的是(

A.上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

B.上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

C.上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

D.上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 ,過直線上任一點向拋物線引兩條切線(切點為,且點軸上方).

(1)求證:直線過定點,并求出該定點;

(2)拋物線上是否存在點,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計值(四舍五入保留整數(shù));

(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

(3)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有 的把握認為“生產(chǎn)能手與工人所在年齡組有關(guān)”?

生產(chǎn)能手

非生產(chǎn)能手

合計

25周歲以上組

25周歲以下組

合計

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,∠ACB=,AC=3, BC=2,P△ABC內(nèi)的一點.

(1)若△BPC是以BC為斜邊的等腰直角三角形,PA長;

(2)∠BPC=,求△PBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓+=1的左焦點為F,直線x-y-2=0,x-y+2=0與橢圓分別相交于AB,C,D,則|AF|+|BF|+|CF|+|DF|=______

查看答案和解析>>

同步練習冊答案