【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左焦點為F,離心率為 .若經(jīng)過F和P(0,4)兩點的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( )
A.
=1
B.
=1
C.
=1
D.
=1
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.
(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)圖象向左平移 個單位后,得到函數(shù)的圖象關(guān)于點( ,0)對稱,則函數(shù)g(x)=cos(x+φ)在[﹣ , ]上的最小值是( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2 .
(2)若a+b=1,求證: + + ≥12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點,C是橢圓E上的一點,直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點,且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20 , 接下來的兩項是20 , 21 , 再接下來的三項是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.440
B.330
C.220
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球n個.若從袋子中隨機(jī)抽取1個小球,取到標(biāo)號為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個小球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.
①記“”為事件A,求事件A的概率;
②在區(qū)間內(nèi)任取2個實數(shù),求事件“恒成立”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com