【題目】如圖,梯形ABCD內接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.
(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
【答案】
(1)解:∵AD∥BC
∴AB=DC,∠EDC=∠BCD,
又PC與⊙O相切,∴∠ECD=∠DBC,
∴△CDE∽△BCD,∴ ,
∴CD2=DEBC,即AB2=DEBC
(2)解:由(1)知, ,
∵△PDE∽△PBC,
∴ .
又∵PB﹣PD=9,
∴ .
∴ .
∴
【解析】對于(1)求證:AB2=DEBC,根據題目可以判斷出梯形為等腰梯形,故AB=CD,然后根據角的相等證△CDE相似于△BCD,根據相似的性質即可得到答案.
對于(2)由BD=9,AB=6,BC=9,求切線PC的長.根據弦切公式可得PC2=PDPB,然后根據相似三角形邊成比例的性質求出PD和PB代入即可求得答案.
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)若點的極坐標為,是曲線上的一動點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于160分的學生進入第二階段比賽.現有200名學生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(Ⅰ)估算這200名學生測試成績的中位數,并求進入第二階段比賽的學生人數;
(Ⅱ)將進入第二階段的學生分成若干隊進行比賽.現甲、乙兩隊在比賽中均已獲得120分,進入最后搶答階段.搶答規(guī)則:搶到的隊每次需猜3條謎語,猜對1條得20分,猜錯1條扣20分.根據經驗,甲隊猜對每條謎語的概率均為 ,乙隊猜對前兩條的概率均為 ,猜對第3條的概率為 .若這兩隊搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小王每天自己開車上班,他在路上所用的時間(分鐘)與道路的擁堵情況有關.小王在一年中隨機記錄了200次上班在路上所用的時間,其頻數統(tǒng)計如下表,用頻率近似代替概率.
(分鐘) | 15 | 20 | 25 | 30 |
頻數(次) | 50 | 50 | 60 | 40 |
(Ⅰ)求小王上班在路上所用時間的數學期望;
(Ⅱ)若小王一周上班5天,每天的道路擁堵情況彼此獨立,設一周內上班在路上所用時間不超過的天數為,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)當時,求函數的單調遞增區(qū)間;
(2)對于,為任意實數,關于的方程恰好有兩個不等實根,求實數的值;
(3)在(2)的條件下,若不等式在恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左焦點為F,離心率為 .若經過F和P(0,4)兩點的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com