【題目】已知實數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2
(2)若a+b=1,求證: + + ≥12.

【答案】
(1)證明:由a>0,b>0,可得

|x+a|+|x﹣b|≥|(x+a)﹣(x﹣b)|=a+b≥2 ,

當(dāng)且僅當(dāng)a=b取得等號


(2)證明:由a,b>0,1=a+b≥2 ,

可得ab≤ ,即 ≥4,

+ + = + = ≥12,

當(dāng)且僅當(dāng)a=b= ,取得等號


【解析】(1)運用絕對值不等式的性質(zhì)和均值不等式,即可得證;(2)由均值不等式可得ab≤ ,即 ≥4,原不等式左邊化簡即為 ,即可得證.
【考點精析】解答此題的關(guān)鍵在于理解不等式的證明的相關(guān)知識,掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王每天自己開車上班,他在路上所用的時間(分鐘)與道路的擁堵情況有關(guān).小王在一年中隨機記錄了200次上班在路上所用的時間,其頻數(shù)統(tǒng)計如下表,用頻率近似代替概率.

(分鐘)

15

20

25

30

頻數(shù)(次)

50

50

60

40

(Ⅰ)求小王上班在路上所用時間的數(shù)學(xué)期望;

(Ⅱ)若小王一周上班5天,每天的道路擁堵情況彼此獨立,設(shè)一周內(nèi)上班在路上所用時間不超過的天數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(x0 , 0),B(0,y0)兩點分別在x軸和y軸上運動,且|AB|=1,若動點P(x,y)滿足
(1)求出動點P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線l1與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程;
(3)直線l2:x=ty+1與曲線C交于A、B兩點,E(1,0),試問:當(dāng)t變化時,是否存在一直線l2 , 使△ABE的面積為 ?若存在,求出直線l2的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比小于1的等比數(shù)列{an}的前n項和為Sn , a1= ,且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3(1﹣Sn+1),若 + +…+ = ,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個定點,動點滿足.設(shè)動點的軌跡為曲線,直線.

(1)求曲線的軌跡方程;

(2)若與曲線交于不同的兩點,且為坐標(biāo)原點),求直線的斜率;

(3)若, 是直線上的動點,過作曲線的兩條切線,切點為,探究:直線是否過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左焦點為F,離心率為 .若經(jīng)過F和P(0,4)兩點的直線平行于雙曲線的一條漸近線,則雙曲線的方程為(  )
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線.

1)若,求實數(shù)的值;

2)若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C與A,B兩點,圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標(biāo)原點O在圓M上;
(Ⅱ)設(shè)圓M過點P(4,﹣2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一個平面內(nèi),向量 , 的模分別為1,1, , 的夾角為α,且tanα=7, 的夾角為45°.若 =m +n (m,n∈R),則m+n=

查看答案和解析>>

同步練習(xí)冊答案