【題目】一半徑為2米的水輪如圖所示,水輪圓心距離水面1;已知水輪按逆時(shí)針做勻速轉(zhuǎn)動(dòng),每3秒轉(zhuǎn)一圈,如果當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)(圖中點(diǎn))開始計(jì)算時(shí)間.

(1)試將點(diǎn)距離水面的高度(單位:)表示為時(shí)間(單位:)的函數(shù);

(2)點(diǎn)第一次到達(dá)最高點(diǎn)大約要多長(zhǎng)時(shí)間?

(3)的值.

【答案】(1);(2)1;(3)3

【解析】

1)先根據(jù)的最大和最小值求得,利用周期求得,當(dāng)時(shí),,進(jìn)而求得的值,則函數(shù)的表達(dá)式可得;

2)令最大值為3,可得三角函數(shù)方程,進(jìn)而可求點(diǎn)第一次到達(dá)最高點(diǎn)的時(shí)間;

3)由(1)可求:,,,進(jìn)而可求是定值.

(1)以水輪所在平面與水面的交線為軸,以過點(diǎn)且與水面垂直的直線為軸,建立直角坐標(biāo)系,

設(shè),,則,

,,,

時(shí),,,

,

,;

(2)由題意知,令,即,所以,即,即點(diǎn)第一次到達(dá)最高點(diǎn)要.

(3)(1)知,,

,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按文獻(xiàn)記載,《百家姓》成文于北宋初年,表1記錄了《百家姓》開頭的24大姓氏:

1

衛(wèi)

2記錄了2018年中國(guó)人口最多的前10大姓氏:

2

1:李

2:王

3:張

4:劉

5:陳

6:楊

7:趙

8:黃

9:周

10:吳

從《百家姓》開頭的24大姓氏中隨機(jī)選取1個(gè)姓氏,則這個(gè)姓氏是2018年中國(guó)人口最多的前10大姓氏的概率為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用五種不同顏色給三棱臺(tái)的六個(gè)頂點(diǎn)染色,要求每個(gè)點(diǎn)染一種顏色,且每條棱的兩個(gè)端點(diǎn)染不同顏色.則不同的染色方法有___________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1) 如果,求函數(shù)的值域;

(2) 求函數(shù)的最大值;

(3) 如果對(duì)不等式中的任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中常數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求證: ;

(3)求證: .

選做題:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某老小區(qū)建成時(shí)間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)

年份編號(hào)x

1

2

3

4

5

年份

2014

2015

2016

2017

2018

加裝戶數(shù)y

34

95

124

181

216

)若有意向加裝暖氣的戶數(shù)y與年份編號(hào)x滿足線性相關(guān)關(guān)系求yx的線性回歸方程并預(yù)測(cè)截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;

2018年年底鄭州市民生工程決定對(duì)老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個(gè)名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競(jìng)拍的方式分配名額,競(jìng)拍方案如下:①截至2018年年底已登記在冊(cè)的居民擁有競(jìng)拍資格;②每戶至多申請(qǐng)一個(gè)名額,由戶主在競(jìng)拍網(wǎng)站上提出申請(qǐng)并給出每平方米的心理期望報(bào)價(jià);③根據(jù)物價(jià)部門的規(guī)定,每平方米的初裝價(jià)格不得超過300元;④申請(qǐng)階段截止后,將所有申請(qǐng)居民的報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則認(rèn)為申請(qǐng)時(shí)問在前的居民得到名額,為預(yù)測(cè)本次競(jìng)拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競(jìng)拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計(jì)了他們的擬報(bào)競(jìng)價(jià),得到如圖所示的頻率分布直方圖:

1)求所抽取的居民中擬報(bào)競(jìng)價(jià)不低于成本價(jià)180元的人數(shù);

2)如果所有符合條件的居民均參與競(jìng)拍,請(qǐng)你利用樣本估計(jì)總體的思想預(yù)測(cè)至少需要報(bào)價(jià)多少元才能獲得名額(結(jié)果取整數(shù))

參考公式對(duì)于一組數(shù)據(jù)(x1,y1),(x2y2),(x3,y3),xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具廠生產(chǎn)出一種新型兒童泡沫玩具飛機(jī),為更精確的確定最終售價(jià),該廠采用了多種價(jià)格對(duì)該玩具飛機(jī)進(jìn)行了試銷,某銷售點(diǎn)的銷售情況如下表:

單價(jià)(元)

8

9

10

11

12

銷量(架)

40

36

30

24

20

從散點(diǎn)圖可以看出,這些點(diǎn)大致分布在一條直線的附近,變量,有較強(qiáng)的線性相關(guān)性.

(1)求銷量關(guān)于的回歸方程;

(2)若每架該玩具飛機(jī)的成本價(jià)為5元,利用(1)的結(jié)果,預(yù)測(cè)每架該玩具飛機(jī)的定價(jià)為多少元時(shí),總利潤(rùn)最大.(結(jié)果保留一位小數(shù))

(附:,,,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案