【題目】過點(diǎn)P(﹣3,﹣4)作直線l,當(dāng)l的斜率為何值時(shí)
(1)l將圓(x﹣1)2+(y+2)2=4平分?
(2)l與圓(x﹣1)2+(y+2)2=4相切?
(3)l與圓(x﹣1)2+(y+2)2=4相交且所截得弦長=2?

【答案】
(1)解:當(dāng)l經(jīng)過圓心Q(1,﹣2)時(shí),可將圓(x﹣1)2+(y+2)2=4平分,

∴直線l的方程為:y+2= (x﹣1),化為x﹣2y﹣5=0


(2)解:設(shè)直線l的方程為:y+4=k(x+3),化為kx﹣y+3k﹣4=0,

∵直線l與圓相切,

∴圓心Q(1,﹣2)到直線l的距離d= =2,化為:3k2﹣4k=0,

解得k=0或 .∴當(dāng)k=0或 時(shí),直線l與圓相切


(3)解:∵l與圓(x﹣1)2+(y+2)2=4相交且所截得弦長=2,

∴直線l的距離d= = ,化為13k2﹣16k+1=0,

解得k=

∴當(dāng)k= 時(shí),滿足條件


【解析】(1)當(dāng)l經(jīng)過圓心Q(1,﹣2)時(shí),可將圓(x﹣1)2+(y+2)2=4平分,利用點(diǎn)斜式即可得出.(2)設(shè)直線l的方程為:y+4=k(x+3),化為kx﹣y+3k﹣4=0,根據(jù)直線l與圓相切,可得圓心Q(1,﹣2)到直線l的距離d= =2,解出即可.(3)由于l與圓(x﹣1)2+(y+2)2=4相交且所截得弦長=2,可得直線l的距離d= = ,解出k即可.
【考點(diǎn)精析】通過靈活運(yùn)用點(diǎn)斜式方程,掌握直線的點(diǎn)斜式方程:直線經(jīng)過點(diǎn),且斜率為則:即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加合適,說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,過點(diǎn)作直線交圓兩點(diǎn),分別過兩點(diǎn)作圓的切線,當(dāng)兩條切線相交于點(diǎn)時(shí),則點(diǎn)的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語文樂隊(duì)理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同軌班級進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強(qiáng)語文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?

(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在6—8分鐘,現(xiàn)小明、小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明現(xiàn)正確解答完的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形,

(1)證明: ;

(2)若在平面內(nèi)的正投影為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為自然對數(shù)的底數(shù)), .

(1)若的極值點(diǎn),且直線分別與函數(shù)的圖象交于,求兩點(diǎn)間的最短距離;

(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=1,an+an+1=( n , Sn=a1+4a2+42a3+…+4n1an , 類比課本中推導(dǎo)等比數(shù)列前項(xiàng)和公式的方法,可求得5Sn﹣4nan=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為130m/min,山路AC長為1260m,經(jīng)測量,cosA= ,cosC=
(1)求索道AB的長;
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時(shí)間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,AB兩點(diǎn)的極坐標(biāo)分別為.

()求圓C的普通方程和直線的直角坐標(biāo)方程;

()點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案