【題目】某廠生產(chǎn)的某種零件的尺寸大致服從正態(tài)分布,且規(guī)定尺寸為次品,其余的為正品.生產(chǎn)線上的打包機(jī)自動(dòng)把每5件零件打包成1箱,然后進(jìn)入銷售環(huán)節(jié),若每銷售一件正品可獲利50元,每銷售一件次品虧損100元.現(xiàn)從生產(chǎn)線生產(chǎn)的零件中抽樣20箱做質(zhì)量分析,作出的頻率分布直方圖如下:

1)估計(jì)生產(chǎn)線生產(chǎn)的零件的次品率及零件的平均尺寸;

2)從生產(chǎn)線上隨機(jī)取一箱零件,求這箱零件銷售后的期望利潤(rùn)及不虧損的概率.

【答案】10.20;98.82

【解析】

1)求出的值,即可得到次品的尺寸范圍,根據(jù)頻率分布圖求出次品率,并求出各組的頻率,按照平均數(shù)公式即可求解;

2)設(shè)生產(chǎn)線上的一箱零件(5件)中的正品數(shù)為,則,將利潤(rùn)表示為的函數(shù),由二項(xiàng)分布的期望公式和期望的性質(zhì),求出利潤(rùn)的期望;要使銷售不虧損,5件產(chǎn)品中至少要有4件正品,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,即可求解.

1)次品的尺寸范圍,

,即,

故生產(chǎn)線生產(chǎn)的產(chǎn)品次品率為:

生產(chǎn)線生產(chǎn)的產(chǎn)品平均尺寸為:

2)設(shè)生產(chǎn)線上的一箱零件(5件)中的正品數(shù)為,

正品率為,故,

設(shè)銷售生產(chǎn)線上的一箱零件獲利為元,

(元)

設(shè)事件:銷售生產(chǎn)線上的一箱零件不虧損,則

,

答:生產(chǎn)線生產(chǎn)的零件的次品率為0.2,零件的平均尺寸為98.8,

這箱零件銷售后的期望利潤(rùn)為100元,不虧損的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店每天以每枝元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝元價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

1)若花店一天購(gòu)進(jìn)枝玫瑰花,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式;

2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量








頻數(shù)








天的各需求量的頻率作為各需求量發(fā)生的概率.

若花店一天購(gòu)進(jìn)枝玫瑰花, 表示當(dāng)天的利潤(rùn)(單位:元),求的分布列, 數(shù)學(xué)期望及方差;

若花店一天購(gòu)進(jìn)枝或枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)枝還是枝?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD和矩形ABEF中,,,矩形ABEF可沿AB任意翻折.

1)求證:當(dāng)點(diǎn)F,A,D不共線時(shí),線段MN總平行于平面ADF.

2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個(gè)結(jié)論正確嗎?如果正確,請(qǐng)證明;如果不正確,請(qǐng)說(shuō)明能否改變個(gè)別已知條件使上述結(jié)論成立,并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4

)求{an}的通項(xiàng)公式;

)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐,底面,,,上一點(diǎn),且.

(1)求證:平面;

(2),,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè)實(shí)數(shù)、、、、滿足

(i)、、且不全為0;

(ii)、;

(iii)若,則.

若所有形如的數(shù)均不為2014的倍數(shù),則稱集合為“好集”.求好集所含元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四面體的各棱長(zhǎng)均為2,、分別為棱、、的中點(diǎn),以為圓心、1為半徑,分別在面、面內(nèi)作弧,并將兩弧各分成五等份,分點(diǎn)順次為、、、、以及、、、、.一只甲蟲(chóng)欲從點(diǎn)出發(fā),沿四面體表面爬行至點(diǎn),則其爬行的最短距離為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園內(nèi)有一塊以為圓心半徑為米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn)分別在圓周上;觀眾席為梯形內(nèi)切在圓外的區(qū)域,其中,,且,在點(diǎn)的同側(cè).為保證視聽(tīng)效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)處的距離都不超過(guò)米.設(shè),.問(wèn):對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為

1)求過(guò)點(diǎn)且與圓相切的直線的方程;

2)直線過(guò)點(diǎn),且與圓交于、兩點(diǎn),若,求直線的方程;

查看答案和解析>>

同步練習(xí)冊(cè)答案