【題目】在四棱錐中,底面為平行四邊形,平面平面,是邊長為4的等邊三角形,,的中點.

(1)求證:;

(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.

【答案】(1)見證明;(2)

【解析】

1)由面面垂直的性質可得平面.可得 ,結合平面.,可得,得到平面,從而可得結果;(2)根據(jù)直線與平面所成角的正弦值為,可求得 ,以,所在的直線分別為,軸,建立空間直角坐標系,利用向量垂直數(shù)量積為零列方程求出平面的一個法向量,結合平面的一個法向量為,利用空間向量夾角余弦公式可得結果.

(1)因為是等邊三角形,的中點,

所以.

又平面平面,平面平面平面,

所以平面.

所以,

又因為,

所以平面.所以.

又因為,所以.

,平面,所以平面.

所以.

(2)

由(1)得平面.

所以就是直線與平面所成角.

因為直線與平面所成角的正弦值為,即,所以.

所以,解得.則.

由(1)得,,兩兩垂直,所以以為原點,,所在的直線分別為,,軸,建立如圖所示的空間直角坐標系,

則點, ,,

所以,.

令平面的法向量為,則

解得

,可得平面的一個法向量為

易知平面的一個法向量為,

設平面與平面所成的銳二面角的大小為,則.

所以平面與平面所成的銳二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題;命題關于的方程有兩個相異實數(shù)根.

1)若為真命題,求實數(shù)的取值范圍;

2)若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐中,為等腰直角三角形,,設點中點,點中點,點上一點,且

(1)證明:平面;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C)上一點到焦點的距離為4.

1)求拋物線C的方程;

2)若,直線l與拋物線C相交于A,B兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱柱中,側棱底面,平面,,,為棱的中點.

1)證明:;

2)求二面角的平面角的正弦值;

3)設點在線段上,且直線與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的檢驗員為了檢測生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機抽取了個進行測量,根據(jù)所測量的數(shù)據(jù)畫出頻率分布直方圖如下:

如果:尺寸數(shù)據(jù)在內的零件為合格品,頻率作為概率.

(1)從產(chǎn)品中隨機抽取件,合格品的個數(shù)為,求的分布列與期望:

(2)為了提高產(chǎn)品合格率,現(xiàn)提出,兩種不同的改進方案進行試驗,若按方案進行試驗后,隨機抽取件產(chǎn)品,不合格個數(shù)的期望是:若按方案試驗后,抽取件產(chǎn)品,不合格個數(shù)的期望是,你會選擇哪個改進方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信搶紅包2015年以來異;鸨谀硞微信群某次進行的搶紅包活動中,若所發(fā)紅包的總金額為10元,被隨機分配為1元,2.5元,3元,3.5元,共4份,供甲、乙等4人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于6元的概率是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,,平面PAB,,E為線段PB的中點

1)證明:平面PDC

2)求直線DE與平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

同步練習冊答案