【題目】如圖,在三棱柱中,底面為正三角形,側棱底面.已知的中點,

(Ⅰ)求證:平面平面;

(Ⅱ)求證:∥平面

(Ⅲ)求三棱錐的體積.

【答案】見解析 見解析

【解析】試題分析:(Ⅰ)由, ,可證平面即可證明

平面平面;

證明又因為平面 平面,所以∥平面

(Ⅲ)由即可求得三棱錐的體積.

試題解析:

(Ⅰ)證明:由已知為正三角形,且DBC的中點,

所以

因為側棱底面, ,

所以底面

又因為底面,所以.

,

所以平面

因為平面,所以平面平面

(Ⅱ)證明:連接,設,連接

由已知得,四邊形為正方形,的中點.

因為的中點,所以

又因為平面 平面,

所以∥平面

(Ⅲ)由(Ⅱ)可知∥平面,

所以到平面的距離相等,

所以

由題設及,得,且

所以,

所以三棱錐的體積為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列滿足,其中,且 為常數(shù).

(1)若是等差數(shù)列,且公差,求的值;

(2)若,且存在,使得對任意的都成立,求的最小值;

(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對任意的均成立. 求所有滿足條件的數(shù)列的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,圓,以動點為圓心的圓經(jīng)過點,且圓與圓內(nèi)切.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)若直線過點,且與曲線交于兩點,則在軸上是否存在一點,使得軸平分?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】煉鋼是一個氧化降碳的過程,鋼水含碳量的多少直接影響冶煉時間的長短,必須掌握鋼水含碳量和冶煉時間的關系.如果已測得爐料溶化完畢時鋼水的含碳量x與冶煉時間y(從爐料溶化完畢到出鋼的時間)的一組數(shù)據(jù),如表所示:

x(0.01%)

104

180

190

177

147

134

150

191

204

121

y/min

100

200

210

185

155

135

170

205

235

125

(1)yx是否具有線性相關關系?

(2)如果yx具有線性相關關系,求回歸直線方程.

(3)預報當鋼水含碳量為1600.01%,應冶煉多少分鐘?

參考公式:r  ,

線性回歸方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)求的普通方程和的傾斜角;

(2)設點交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆山西省太原十二中高三上學期1月月考】運動員甲在最近比賽中所得分數(shù)的莖葉圖如圖所示,由于疏忽,莖葉圖中的兩個數(shù)據(jù)上出行了污漬,導致這兩個數(shù)字無法辨認,但統(tǒng)計員記得除掉污漬處的數(shù)字不影響整體中位數(shù),且這六個數(shù)據(jù)的平均值為.

1)求污漬處的數(shù)字;

2)籃球運動員乙在最近的比賽中所得分數(shù)為.試分別以各自場比賽得分的平均數(shù)與方差來分析這兩名籃球運動員的發(fā)揮水平.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側棱的中點,為側棱上的任意一點.

(1)若的中點,求證: 面平面;

(2)是否存在點,使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形,平面于點,且平面.

(1)求證: ;

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).

(1)證明:數(shù)列{an}是等比數(shù)列;

(2)當p=3時,若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案