【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側(cè)棱的中點(diǎn),為側(cè)棱上的任意一點(diǎn).

(1)若的中點(diǎn),求證: 面平面;

(2)是否存在點(diǎn),使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:(1)由面面垂直的性質(zhì)定理可得平面,從而得,再結(jié)合,可得平面,又利用三角形中位線定理可得,進(jìn)而可得結(jié)果;(2)過點(diǎn),垂足為,先證明平面,結(jié)合平面,,從而可得平面,利用三角形面積相等即可得線段的長(zhǎng).

試題解析:(1)∵分別為側(cè)棱的中點(diǎn),∴.

,∴.

∵面平面,且,面平面,

平面,結(jié)合平面,得.

又∵, ,∴平面,可得平面.

∴ 結(jié)合平面,得平面 平面.

(2)存在點(diǎn),使得直線與平面垂直.

平面中,過點(diǎn),垂足為

∵由己知,,,.

∴根據(jù)平面幾何知識(shí),可得.

又∵由(1)平面,得 ,且,

平面,結(jié)合平面,得.

又∵,∴平面.

中,, ,

,.

上存在點(diǎn),使得直線與平面垂直,此時(shí)線段長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,函數(shù) x.
(1)若g(mx2+2x+m)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在非負(fù)實(shí)數(shù)m、n,使得函數(shù) 的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m、n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽(yáng)馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點(diǎn)E是PC的中點(diǎn),連接DE,BD,BE.
(1)證明:DE⊥平面PBC.
(2)試判斷四面體EBCD是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;
(3)記陽(yáng)馬P﹣ABCD的體積為V1 , 四面體EBCD的體積為V2 , 求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知則下列結(jié)論中正確的是

A. 將函數(shù)的圖象向左平移個(gè)單位后得到函數(shù)的圖象

B. 函數(shù)圖象關(guān)于點(diǎn)中心對(duì)稱

C. 函數(shù)的圖象關(guān)于對(duì)稱

D. 函數(shù)在區(qū)間內(nèi)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù).

(Ⅰ)求的最小值;

(Ⅱ)若不等式恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,2),B(﹣1,2),動(dòng)點(diǎn)P滿足 ,若雙曲線 =1(a>0,b>0)的漸近線與動(dòng)點(diǎn)P的軌跡沒有公共點(diǎn),則雙曲線離心率的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),則實(shí)數(shù)a的取值范圍是(
A.a<0
B.a≤0
C.a≤1
D.a≤0或a=1

查看答案和解析>>

同步練習(xí)冊(cè)答案