【題目】橢圓(a>0,b>0)的左右焦點(diǎn)分別為F1,F2,與y軸正半軸交于點(diǎn)B,若△BF1F2為等腰直角三角形,且直線BF1被圓x2+y2=b2所截得的弦長(zhǎng)為2,
(1)求橢圓的方程;
(2)直線l:y=kx+m與橢圓交于點(diǎn)A,C,線段AC的中點(diǎn)為M,射線MO與橢圓交于點(diǎn)P,點(diǎn)O為△PAC的重心,求證:△PAC的面積S為定值;
【答案】(1)1;(2)見解析
【解析】
(1)由題意得b=c,BF1=2,求出a、b后即可得解;
(2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0),聯(lián)立方程組得,,由題意x0,y0,△PAC的面積,化簡(jiǎn)即可得證.
(1)根據(jù)題意,由△BF1F2為等腰直角三角形可得b=c,
直線BF1:y=x+b被圓x2+y2=b2所截得的弦長(zhǎng)為2,即BF1=2,
所以a=2,,所以橢圓的方程為1;
(2)證明:直線l的方程為y=kx+m,設(shè)A(x1,y1),B(x2,y2),
聯(lián)立,可得(1+2k2)x2+4kmx+2m2﹣4=0,
x1+x2,x1x2,y1+y2=k(x1+x2)+2m,
由題意點(diǎn)O為△PAC重心,設(shè)P(x0,y0),可得0,0,
所以x0=-(x1+x2),y0=-(y1+y2),
代入橢圓1;得1,化為2m2=1+2k2,
設(shè)坐標(biāo)原點(diǎn)O到直線l的距離為d,
則△PAC的面積S|AC|3d|x1﹣x2||m||x1﹣x2||m|
|m|=3.
可得△PAC的面積S為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義為R的偶函數(shù),且對(duì)任意的,都有且當(dāng)時(shí), ,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年雙11當(dāng)天,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)2135億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.
(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 140 | ||
對(duì)商品不滿意 | 10 | ||
合計(jì) | 200 |
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為X.
①求隨機(jī)變量X的分布列;
②求X的數(shù)學(xué)期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,平面平面,為等邊三角形,,是的中點(diǎn).
(1)求證:;
(2)若,為線段上一點(diǎn),且,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上任意一點(diǎn)滿足,直線的方程為,且與曲線交于不同兩點(diǎn),.
(1)求曲線的方程;
(2)設(shè)點(diǎn),直線與的斜率分別為,,且,判斷直線是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)試討論的單調(diào)性;
(Ⅱ)若函數(shù)存在極值,對(duì)于任意的,存在正實(shí)數(shù),使得 ,試判斷與的大小關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ABE﹣DCF和一個(gè)四棱錐P﹣ABCD組合而成,其中EF=EA=EB=2,AE⊥EB,PA=PD,平面PAD∥平面EBCF.
(1)證明:平面PBC∥平面AEFD;
(2)求直線AP與平面PCD所成角的正弦值.
查看答案和解析>>
科目:
來源: 題型:【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件,為激發(fā)大家的學(xué)習(xí)興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng),這款軟件的激活碼為下列數(shù)學(xué)問題的答案:已知數(shù)列1、1、2、1、2、4、8、1、2、4、8、16、……,其中第一項(xiàng)是,接下來的兩項(xiàng)是,再接下來的三項(xiàng)是,……,以此類推,求滿足如下條件的最小整數(shù)且該數(shù)列的前項(xiàng)和為2的整數(shù)冪,那么該軟件的激活碼是________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面, , , , , .
(Ⅰ)求證: ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點(diǎn)在棱上,且平面,求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com