【題目】如圖,在四棱錐中,平面平面, , , ,

)求證: ;

)求二面角的余弦值;

(Ⅲ)若點(diǎn)在棱上,且平面,求線段的長(zhǎng)

【答案】見(jiàn)解析 .(

【解析】試題分析:第一問(wèn)根據(jù)面面垂直的性質(zhì)和線面垂直的性質(zhì)得出線線垂直的結(jié)論,注意在書(shū)寫(xiě)的時(shí)候條件不要丟就行;第二問(wèn)建立空間直角坐標(biāo)系,利用法向量所成角的余弦值來(lái)求得二面角的余弦值;第三問(wèn)利用向量共線的關(guān)系,得出向量的坐標(biāo),根據(jù)線面平行得出向量垂直,利用其數(shù)量積等于零,求得結(jié)果.

證明:因?yàn)槠矫?/span>⊥平面

且平面平面,

因?yàn)?/span>,且平面

所以平面

因?yàn)?/span>平面,

所以

解:在中,因?yàn)?/span>, ,

所以,所以

所以,建立空間直角坐標(biāo)系,如圖所示

所以, , ,

,

,

易知平面的一個(gè)法向量為

設(shè)平面的一個(gè)法向量為,

, 即,

,

設(shè)二面角的平面角為,可知為銳角

,

即二面角的余弦值為

(Ⅲ)解:因?yàn)辄c(diǎn)在棱所以,

因?yàn)?/san>,

所以

又因?yàn)?/span>平面, 為平面的一個(gè)法向量,

所以,,所以

所以,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,甲船由A島出發(fā)向北偏東45°的方向作勻速直線航行,速度為nmile/h,在甲船從A島出發(fā)的同時(shí),乙船從A島正南nmile處的B島出發(fā),朝北偏東30°的方向作勻速直線航行,速度為nmile/h.

1)若兩船能相遇,求m;

2)當(dāng)時(shí),兩船出發(fā)2小時(shí)后,求兩船之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機(jī)抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測(cè)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為(單位:元),指數(shù)為.當(dāng)在區(qū)間內(nèi)時(shí)對(duì)企業(yè)沒(méi)有造成經(jīng)濟(jì)損失;當(dāng)在區(qū)間內(nèi)時(shí)對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)指數(shù)為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)指數(shù)為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)指數(shù)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.

(1)試寫(xiě)出的表達(dá)式;

(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于500元且不超過(guò)900元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中, ,且平面, , , 是棱的中點(diǎn).

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年電子商務(wù)蓬勃發(fā)展, 年某網(wǎng)購(gòu)平臺(tái)“雙”一天的銷(xiāo)售業(yè)績(jī)高達(dá)億元人民幣,平臺(tái)對(duì)每次成功交易都有針對(duì)商品和快遞是否滿(mǎn)意的評(píng)價(jià)系統(tǒng).從該評(píng)價(jià)系統(tǒng)中選出次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿(mǎn)意率為,對(duì)快遞的滿(mǎn)意率為,其中對(duì)商品和快遞都滿(mǎn)意的交易為次.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿(mǎn)意與對(duì)快遞滿(mǎn)意之間有關(guān)系”?

對(duì)快遞滿(mǎn)意

對(duì)快遞不滿(mǎn)意

合計(jì)

對(duì)商品滿(mǎn)意

對(duì)商品不滿(mǎn)意

合計(jì)

(2)為進(jìn)一步提高購(gòu)物者的滿(mǎn)意度,平臺(tái)按分層抽樣方法從中抽取次交易進(jìn)行問(wèn)卷調(diào)查,詳細(xì)了解滿(mǎn)意與否的具體原因,并在這次交易中再隨機(jī)抽取次進(jìn)行電話回訪,聽(tīng)取購(gòu)物者意見(jiàn).求電話回訪的次交易至少有一次對(duì)商品和快遞都滿(mǎn)意的概率.

附: (其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù).

(1)此函數(shù)在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;

(2)在(1)的條件下,若,恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線是中心在原點(diǎn),焦點(diǎn)在軸上的雙曲線的右支,它的離心率剛好是其對(duì)應(yīng)雙曲線的實(shí)軸長(zhǎng),且一條漸近線方程是,線段是過(guò)曲線右焦點(diǎn)的一條弦,是弦的中點(diǎn)。

(1)求曲線的方程;

(2)求點(diǎn)軸距離的最小值;

(3)若作出直線,使點(diǎn)在直線上的射影滿(mǎn)足.當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)時(shí),求的取值范圍.

(參考公式:若為雙曲線右支上的點(diǎn),為右焦點(diǎn),則.(為離心率))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)且斜率為的直線與拋物線交于不同兩點(diǎn),線段的中點(diǎn)為,直線與拋物線交于兩點(diǎn)

Ⅰ)判斷是否存在實(shí)數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說(shuō)明理由;

Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,點(diǎn),分別是,的中點(diǎn).

(1)求證:平面;

(2)若點(diǎn)為棱上一點(diǎn),且平面平面, 求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案