已知頂點在坐標原點,焦點在x軸正半軸的拋物線上有一點A(,m),A點到拋物線焦點的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個定點,過M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過定點(x0+2,-y0).
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:我們把橢圓的焦距與長軸的長度之比即,叫做橢圓的離心率.若兩個橢圓的離心率相同,稱這兩個橢圓相似.
(1)判斷橢圓與橢圓是否相似?并說明理由;
(2)若橢圓與橢圓相似,求的值;
(3)設(shè)動直線與(2)中的橢圓交于兩點,試探究:在橢圓上是否存在異于的定點,使得直線的斜率之積為定值?若存在,求出定點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)是中心在原點、焦點在x軸上的橢圓C的右焦點,直線l:x=4是橢圓C的右準線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點P是橢圓C上動點,PM⊥l,垂足為M.是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓C的中心在原點,焦點在x軸上,兩焦點F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標準方程;
(2)若橢圓C的右頂點為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M,N,且滿足AM⊥AN.求證:直線l過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為.
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A,B兩點.
①若線段AB中點的橫坐標為-,求斜率k的值;
②已知點M(-,0),求證:·為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個焦點為,離心率為.
(1)求橢圓的標準方程;
(2)若動點為橢圓外一點,且點到橢圓的兩條切線相互垂直,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓上的點M與橢圓右焦點的連線與x軸垂直,且OM(O是坐標原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,雙曲線的中心在坐標原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點,雙曲線的左支上有一點P,∠F1PF2=,且△PF1F2的面積為2,雙曲線的離心率為2,求該雙曲線的標準方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com