已知橢圓C:=1(a>b>0)的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A,B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-,求斜率k的值;
②已知點(diǎn)M(-,0),求證:·為定值.

(1)=1
(2)①±       ②見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C:的離心率,右焦點(diǎn)到直線1的距離,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A、B兩點(diǎn),證明點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線-y2=1的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn).求直線A1P與A2Q交點(diǎn)的軌跡E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線上有一點(diǎn)A(,m),A點(diǎn)到拋物線焦點(diǎn)的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個(gè)定點(diǎn),過M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過定點(diǎn)(x0+2,-y0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知線段的中點(diǎn)為,動(dòng)點(diǎn)滿足為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)所在的曲線方程;
(2)若,動(dòng)點(diǎn)滿足,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)曲線在點(diǎn)處的切線軸交于點(diǎn).直線分別與直線軸交于點(diǎn),以為直徑作圓,過點(diǎn)作圓的切線,切點(diǎn)為,試探究:當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)(點(diǎn)與原點(diǎn)不重合)時(shí),線段的長(zhǎng)度是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖).
(1)求點(diǎn)P的坐標(biāo);
(2)焦點(diǎn)在x軸上的橢圓C過點(diǎn)P,且與直線交于A,B兩點(diǎn),若的面積為2,求C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),兩個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2),是橢圓上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)O為原點(diǎn),若點(diǎn)A在直線,點(diǎn)B在橢圓C上,且,求線段AB長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案