設(shè)橢圓C:的離心率,右焦點(diǎn)到直線1的距離,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A、B兩點(diǎn),證明點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值.

(1);(2)

解析試題分析:
解題思路:(1)利用離心率及點(diǎn)到直線的距離公式求解即可;(2)設(shè)出直線方程,聯(lián)立直線與橢圓的方程,整理成關(guān)于的一元二次方程,利用求解.
規(guī)律總結(jié):直線與圓錐曲線的位置關(guān)系問(wèn)題,一般綜合性強(qiáng).一般思路是聯(lián)立直線與圓錐曲線的方程,整理得關(guān)于的一元二次方程,常用“設(shè)而不求”的方法進(jìn)行求解.
試題解析:(1)由,即
由右焦點(diǎn)到直線的距離為
,解得,
所以橢圓C的方程為.                       
(2)設(shè)A B
直線AB的方程為y=kx+m與橢圓聯(lián)立消去y得
                          
∵OA⊥OB,


                       
整理得                            
所以O(shè)到直線AB的距離
∵OA⊥OB,∴
當(dāng)且僅當(dāng)OA=OB時(shí)取“=”
      
.
即弦的長(zhǎng)度最小值是.
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.直線與橢圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線C:y2=2x,O為坐標(biāo)原點(diǎn),經(jīng)過(guò)點(diǎn)M(2,0)的直線l交拋物線于A,B兩點(diǎn),P為拋物線C上一點(diǎn).
(Ⅰ)若直線l垂直于x軸,求||的值;
(Ⅱ)求三角形OAB的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義:我們把橢圓的焦距與長(zhǎng)軸的長(zhǎng)度之比即,叫做橢圓的離心率.若兩個(gè)橢圓的離心率相同,稱這兩個(gè)橢圓相似.
(1)判斷橢圓與橢圓是否相似?并說(shuō)明理由;
(2)若橢圓與橢圓相似,求的值;
(3)設(shè)動(dòng)直線與(2)中的橢圓交于兩點(diǎn),試探究:在橢圓上是否存在異于的定點(diǎn),使得直線的斜率之積為定值?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,分別是橢圓的左、右焦點(diǎn),頂點(diǎn)的坐標(biāo)為,連結(jié)并延長(zhǎng)交橢圓于點(diǎn)A,過(guò)點(diǎn)A作軸的垂線交橢圓于另一點(diǎn)C,連結(jié).
(1)若點(diǎn)C的坐標(biāo)為,且,求橢圓的方程;
(2)若求橢圓離心率e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(3,0)的直線與橢圓C相交TA,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A,B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-,求斜率k的值;
②已知點(diǎn)M(-,0),求證:·為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

雙曲線的漸近線方程是      

查看答案和解析>>

同步練習(xí)冊(cè)答案