如圖所示,雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),雙曲線的左支上有一點(diǎn)P,∠F1PF2,且△PF1F2的面積為2,雙曲線的離心率為2,求該雙曲線的標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C1和動(dòng)圓C2,直線與C1和C2分別有唯一的公共點(diǎn)A和B.
(I)求的取值范圍;
(II )求|AB|的最大值,并求此時(shí)圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn)
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)的射線與橢圓在第一象限的交點(diǎn)為,與圓的交點(diǎn)為的中點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線-y2=1的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn).求直線A1P與A2Q交點(diǎn)的軌跡E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.

(1)求橢圓的離心率;
(2)過(guò)且與AB垂直的直線交橢圓于P、Q,若的面積是 ,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線上有一點(diǎn)A(,m),A點(diǎn)到拋物線焦點(diǎn)的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個(gè)定點(diǎn),過(guò)M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過(guò)定點(diǎn)(x0+2,-y0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知線段,的中點(diǎn)為,動(dòng)點(diǎn)滿足為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)所在的曲線方程;
(2)若,動(dòng)點(diǎn)滿足,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖).
(1)求點(diǎn)P的坐標(biāo);
(2)焦點(diǎn)在x軸上的橢圓C過(guò)點(diǎn)P,且與直線交于A,B兩點(diǎn),若的面積為2,求C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn)且離心率為
(1)求橢圓的方程;
(2)若斜率為的直線兩點(diǎn),且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案