【題目】金磚國家領導人第九次會晤于2017年9月3日至5日在中國福建廈門市舉行,為了在金磚峰會期間為來到廈門的外國嘉賓提供服務,培訓部對兩千余名志愿者進行了集中培訓,為了檢驗培訓效果,現(xiàn)培訓部從兩千余名志愿者中隨機抽取100名,按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者前去機場參加接待外賓禮儀測試,則應從第3,4,5組中各抽取多少名志愿者?

(2)在(1)的條件下,若在第3,4組的志愿者中隨機抽取2名志愿者介紹接待外賓經驗感受,求第4組至少有1名志愿者被抽中的概率.

【答案】(1)應從第3,4,5組中分別抽取3名,2名,1名志愿者; (2).

【解析】試題分析:1)現(xiàn)有頻率分布直方圖,求得第組的頻數(shù),再利用分層抽樣的方法得到結果;

(2)根據(jù)古典概型的概率計算公式,即可求解第4組至少有1名志愿者的概率.

試題解析:

(1)第3組的人數(shù)為

第4組的人數(shù)為

第5組的人數(shù)為.

因為第3,4,5組共有60名志愿者,所以利用分層抽樣的方法在60名志愿者中抽,56名志愿者,每組抽取的人數(shù)分別為,第3組: ,第4組: ,第5組: .

所以應從第3,4,5組中分別抽取3名,2名,1名志愿者.

(2)記第3組的3名志愿者分別為, , ,第4組的2名志愿者分別為, ,則從透明志愿者中抽取2名志愿者的情況有 , , , , , , , ,共10種.

其中第4組的2名志愿者, 至少有1名被抽中的情況有, , , , ,共7種.

所以第4組至少有1名志愿者被抽中的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, ,則對任意,函數(shù)的零點個數(shù)至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求的最小值;

)若函數(shù)在區(qū)間(0,1)上為單調函數(shù),求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx和g(x)=m(x2-1)(m∈R).

(1)m=1時,求方程f(x)=g(x)的實根;

(2)若對任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方,求m的取值范圍;

(3)求證: +…+>ln(2n+1) (n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形 的四個頂點在橢圓 上,對角線所在直線的斜率為,且 .

(1)當點為橢圓的上頂點時,求所在直線方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在歲之間的100人進行調查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: , ,,,,.把年齡落在區(qū)間內的人分別稱為“青少年”和“中老年”.

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù)

(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有99%的把握認為關注“帶一路”是否和年齡段有關?

關注

不關注

合計

青少年

15

中老年

合計

50

50

100

附:參考公式,其中

臨界值表:

/td>

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在15-75歲之間的100人進行調查, 經統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9:11

關注

不關注

合計

青少年

15

中老年

合計

50

50

100

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認為關注“一帶一路”是否和年齡段有關?

(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調查.在這9人中再選取3人進行面對面詢問,記選取的3人中關注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學期望.

附:參考公式,其中

臨界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)若方程上有實數(shù)根,求實數(shù)的取值范圍;

(2)若上的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為.

(1)求, 的值;

(2)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案