【題目】已知數(shù)列的首項為1,且,數(shù)列滿足,,對任意,都有.

(1)求數(shù)列的通項公式;

(2)令,數(shù)列的前項和為.若對任意的,不等式恒成立,試求實數(shù)的取值范圍.

【答案】(Ⅰ) ;(Ⅱ)

【解析】

試題(1)由,得,又,兩式相減得,整理得,即,又因為,

利用累積法得,

從而可求出數(shù)學的通項公式為;

在數(shù)列中,由,得,且

所以數(shù)學是以首項為,公比為的等比數(shù)列,從而數(shù)列的通項公式為.

2)由題意得

,

兩式相減得,

由等比數(shù)列前項和公式可求得,

由不等式恒成立,得恒成立,

)恒成立,

構造函數(shù)),

時,恒成立,則不滿足條件;

時,由二次函數(shù)性質(zhì)知不恒成立;

時,恒成立,則滿足條件.

綜上所述,實數(shù)的取值范圍是

試題解析:(1,(),兩式相減得,

,即(),又因為,,從而

(),

故數(shù)列的通項公式()

在數(shù)列中,由,知數(shù)列是等比數(shù)列,首項、公比均為

數(shù)列的通項公式

2

①-②,得

不等式即為,

)恒成立.

方法一、設),

時,恒成立,則不滿足條件;

時,由二次函數(shù)性質(zhì)知不恒成立;

時,恒成立,則滿足條件.

綜上所述,實數(shù)λ的取值范圍是

方法二、也即)恒成立,

.則,

,單調(diào)遞增且大于0,單調(diào)遞增

實數(shù)λ的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出T=6,那么判斷框內(nèi)應填入的條件是(
A.k<32
B.k<33
C.k<64
D.k<65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高一某班級在學校數(shù)學嘉年華活動中推出了一款數(shù)學游戲,受到大家的一致追捧.游戲規(guī)則如下:游戲參與者連續(xù)拋擲一顆質(zhì)地均勻的骰子,記第i次得到的點數(shù)為,若存在正整數(shù)n,使得,則稱為游戲參與者的幸運數(shù)字。

(I)求游戲參與者的幸運數(shù)字為1的概率;

(Ⅱ)求游戲參與者的幸運數(shù)字為2的概率,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面上,將兩個半圓弧、兩條直線圍成的封閉圖形記為,如圖中陰影部分.記軸旋轉(zhuǎn)一周而成的幾何體為,過的水平截面,所得截面面積為,試利用祖暅原理(祖暅原理:“冪勢既同,則積不容異”,意思是:兩等高的幾何體在同高處被截得的兩個截面面積均相等,那么這兩個幾何體的體積相等)、一個平放的圓柱和一個長方體,得出的體積值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項,其前項和為,對于任意正整數(shù),,都有.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設數(shù)列滿足,且.

①求證數(shù)列為常數(shù)列.

②求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}前n項和Sn滿足:2Sn+an=1.
(1)求數(shù)列{an}的通項公式;
(2)設 ,數(shù)列{bn}的前n項和為Tn , 求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當a=1時,求函數(shù)f(x)在x=e﹣1處的切線方程;
(2)當 時,討論函數(shù)f(x)的單調(diào)性;
(3)若x>0,求函數(shù) 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究“晚上喝綠茶與失眠”有無關系,調(diào)查了100名人士,得到下面的列聯(lián)表:

失眠

不失眠

合計

晚上喝綠茶

16

40

56

晚上不喝綠茶

5

39

44

合計

21

79

100

由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的結論是( )

A. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠有關”

B. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠無關”

C. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠有關”

D. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,有、三座城市,城在城的正西方向,且兩座城市之間的距離為城在城的正北方向,且兩座城市之間的距離為.由城到城只有一條公路,甲有急事要從城趕到城,現(xiàn)甲先從城沿公路步行到點(不包括、兩點)處,然后從點處開始沿山路趕往城.若甲在公路上步行速度為每小時,在山路上步行速度為每小時,設(單位:弧度),甲從城趕往城所花的時間為(單位:).

(1)求函數(shù)的表達式,并求函數(shù)的定義域;

(2)當點在公路上何處時,甲從城到達城所花的時間最少,并求所花的最少的時間的值.

查看答案和解析>>

同步練習冊答案