【題目】在直三棱柱中,,,,M是側(cè)棱上一點,設(shè)

1)若,求多面體的體積;

2)若異面直線BM所成的角為,求h的值.

【答案】1;(22

【解析】

1)多面體的體積為,由此能求出結(jié)果;
2B為原點,BCx軸,BAy軸,BB1z軸,建立空間直角坐標(biāo)系,利用向量法能求出h的值.

解:(1)∵在直三棱柱ABCA1B1C1中,ABBC,ABBC2,

,M是側(cè)棱C1C上一點,設(shè)MC,

∴多面體ABMA1B1C1的體積為:

.

2)以B為原點,BCx軸,BAy軸,BB1z軸,建立空間直角坐標(biāo)系,

B0,0,0),M2,0,h),A10,2,2),C12,0,2),

=(2,0,h),=(2,﹣20),

∵異面直線BMA1C1所成的角為60°,

cos60°=,

h0,解得h2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,任意,不等式恒成立時最大的記為,當(dāng)時,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國在歐洲的某孔子學(xué)院為了讓更多的人了解中國傳統(tǒng)文化,在當(dāng)?shù)嘏e辦了一場由當(dāng)?shù)厝藚⒓拥闹袊鴤鹘y(tǒng)文化知識大賽,為了了解參加本次大賽參賽人員的成績情況,從參賽的人員中隨機(jī)抽取名人員的成績(滿分100分)作為樣本,將所得數(shù)據(jù)進(jìn)行分析整理后畫出頻率分布直方圖如圖所示,已知抽取的人員中成績在[5060)內(nèi)的頻數(shù)為3.

1)求的值和估計參賽人員的平均成績(保留小數(shù)點后兩位有效數(shù)字);

2)已知抽取的名參賽人員中,成績在[80,90)和[90100]女士人數(shù)都為2人,現(xiàn)從成績在[8090)和[90,100]的抽取的人員中各隨機(jī)抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,菱形與正方形所在平面相交于.

1)求作平面與平面的交線,并說明理由;

2)若垂直且相等,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(其中,點P的軌跡記為曲線,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點Q在曲線上.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)當(dāng),時,求曲線與曲線的公共點的極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的離心率,其左焦點到此雙曲線漸近線的距離為.

1)求雙曲線的方程;

2)若過點的直線交雙曲線兩點,且以為直徑的圓過原點,求圓的圓心到拋物線的準(zhǔn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)由方程確定,對于函數(shù)給出下列命題:

①存在,,使得成立;

,使得同時成立;

③對于任意恒成立;

④對任意,;都有恒成立.

其中正確的命題共有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十項全能是由跑、跳、投等10個田徑項目組成的綜合性男子比賽項目,按照國際田徑聯(lián)合會制定的田徑運動全能評分表計分,然后將各個單項的得分相加,總分多者為優(yōu)勝.下面是某次全能比賽中甲、乙兩名運動員的各個單項得分的雷達(dá)圖.

下列說法錯誤的是(

A.100米項目中,甲的得分比乙高

B.在跳高和標(biāo)槍項目中,甲、乙的得分基本相同

C.甲的各項得分比乙更均衡

D.甲的總分高于乙的總分

查看答案和解析>>

同步練習(xí)冊答案