【題目】十項(xiàng)全能是由跑、跳、投等10個(gè)田徑項(xiàng)目組成的綜合性男子比賽項(xiàng)目,按照國際田徑聯(lián)合會(huì)制定的田徑運(yùn)動(dòng)全能評分表計(jì)分,然后將各個(gè)單項(xiàng)的得分相加,總分多者為優(yōu)勝.下面是某次全能比賽中甲、乙兩名運(yùn)動(dòng)員的各個(gè)單項(xiàng)得分的雷達(dá)圖.

下列說法錯(cuò)誤的是(

A.100米項(xiàng)目中,甲的得分比乙高

B.在跳高和標(biāo)槍項(xiàng)目中,甲、乙的得分基本相同

C.甲的各項(xiàng)得分比乙更均衡

D.甲的總分高于乙的總分

【答案】C

【解析】

根據(jù)雷達(dá)圖依次判斷每個(gè)選項(xiàng)得到答案.

A. 100米項(xiàng)目中,甲的得分比乙高,A正確;

B. 在跳高和標(biāo)槍項(xiàng)目中,甲、乙的得分基本相同,B正確;

C. 乙的各項(xiàng)得分比甲更均衡,C錯(cuò)誤;

D. 甲的總分約為,

乙的總分約為,D正確.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,,,,M是側(cè)棱上一點(diǎn),設(shè)

1)若,求多面體的體積;

2)若異面直線BM所成的角為,求h的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗(yàn),第一次檢測廠家的每件產(chǎn)品合格的概率為,如果合格,則可以出廠;如果不合格,則進(jìn)行技術(shù)處理,處理后進(jìn)行第二次檢測.每件產(chǎn)品的合格率為,如果合格,則可以出廠,不合格則當(dāng)廢品回收.

求某件產(chǎn)品能出廠的概率;

若該產(chǎn)品的生產(chǎn)成本為/件,出廠價(jià)格為/件,每次檢測費(fèi)為/件,技術(shù)處理每次/件,回收獲利/.假如每件產(chǎn)品是否合格相互獨(dú)立,記為任意一件產(chǎn)品所獲得的利潤,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD和矩形ACEF中,ABCE=1,CE平面ABCD

(1)求異面直線DFBE所成角的余弦值;

(2)求二面角ADFB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某便利店統(tǒng)計(jì)了今年第一季度各個(gè)品類的銷售收入占比和凈利潤占比,并將部分品類的這兩個(gè)數(shù)據(jù)制成如下統(tǒng)計(jì)圖(注:銷售收入占比,凈利潤占比,凈利潤銷售收入成本各類費(fèi)用),現(xiàn)給出下列判斷:

①該便利店第一季度至少有一種品類是虧損的;

②該便利店第一季度的銷售收入中“生鮮類”貢獻(xiàn)最大;

③該便利店第一季度“非生鮮食品類”的凈利潤一定高于“日用百貨”的銷售收入;

④該便利店第一季度“生鮮類”的銷售收入比“非生鮮食品類”的銷售收入多.

則上述判斷中正確的是(

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)存在唯一的極值點(diǎn)

1)求實(shí)數(shù)的取值范圍;

2)若,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù).

1)若,證明:;

2)若時(shí),都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著全球石油資源緊張、大氣污染日益嚴(yán)重和電池技術(shù)的提高,電動(dòng)汽車已被世界公認(rèn)為21世紀(jì)汽車工業(yè)改造和發(fā)展的主要方向.為了降低對大氣的污染和能源的消耗,某品牌汽車制造商研發(fā)了兩款電動(dòng)汽車車型和車型,并在黃金周期間同時(shí)投放市場.為了了解這兩款車型在黃金周的銷售情況,制造商隨機(jī)調(diào)查了5家汽車店的銷量(單位:臺(tái)),得到下表:

車型

6

6

13

8

11

車型

12

9

13

6

4

1)若從甲、乙兩家店銷售出的電動(dòng)汽車中分別各自隨機(jī)抽取1臺(tái)電動(dòng)汽車作滿意度調(diào)查,求抽取的2臺(tái)電動(dòng)汽車中至少有1臺(tái)是車型的概率;

2)現(xiàn)從這5家汽車店中任選3家舉行促銷活動(dòng),用表示其中車型銷量超過車型銷量的店的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,曲線的方程為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.若將曲線上的所有點(diǎn)的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)伸長到原來的倍,得曲線

1)寫出直線和曲線的直角坐標(biāo)方程;

2)設(shè)點(diǎn) 直線與曲線的兩個(gè)交點(diǎn)分別為,,求的值.

查看答案和解析>>

同步練習(xí)冊答案