【題目】已知橢圓的離心率為,橢圓的長軸長為4

1)求橢圓的方程;

2)已知直線與橢圓交于兩點,是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點?若存在,求出的值;若不存在,請說明理由.

【答案】12)存在,

【解析】

1)利用橢圓的長軸長為4,可得,結(jié)合離心率可得,從而可得方程;

2)聯(lián)立方程,結(jié)合韋達(dá)定理,驗證是否成立即可.

1)設(shè)橢圓的半焦距為,則由題設(shè),得:

解得,

所以

故所求橢圓的方程為.

2)存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點

理由如下:

設(shè)點,

將直線的方程代入,

并整理,得.(*

因為以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點

所以,即

,

于是

解得,

經(jīng)檢驗知:此時(*)式的,符合題意.

所以當(dāng)時,以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的標(biāo)準(zhǔn)方程是.

(1)求它的焦點坐標(biāo)和準(zhǔn)線方程;

(2)直線過已知拋物線的焦點且傾斜角為45°,且與拋物線的交點為,求的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得曲線C.

1)寫出C的參數(shù)方程;

2)設(shè)直線C的交點為,以坐標(biāo)原點為極點,x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,求過線段的中點且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯誤的是

A. 若命題p為真命題,命題q為假命題,則命題“pV(q)”為真命題

B. 命題“若a+b≠7,則a≠2或b≠5”為真命題

C. 命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1”

D. 命題p: x>0,sinx>2x-1,則p為x>0,sinx≤2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶稱為微信控,否則稱其非微信控,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為微信控性別有關(guān)?

2)現(xiàn)從采訪的女性用戶中按分層抽樣的方法選出10人,再從中隨機抽取3人贈送禮品,求抽取3人中恰有2人為微信控的概率.

參考數(shù)據(jù):

P

0.10

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某水上樂園擬開發(fā)水滑梯項目的效果圖,考慮到空間和安全方面的原因,初步設(shè)計方案如下:如圖(2),自直立于水面的空中平臺的上端點P處分別向水池內(nèi)的三個不同方向建水滑道,,水滑道的下端點在同一條直線上,,平分,假設(shè)水滑梯的滑道可以看成線段,均在過C且與垂直的平面內(nèi),為了滑梯的安全性,設(shè)計要求.

(1)求滑梯的高的最大值;

(2)現(xiàn)在開發(fā)商考慮把該水滑梯項目設(shè)計成室內(nèi)游玩項目,且為保證該項目的趣味性,設(shè)計,求該滑梯裝置(即圖(2)中的幾何體)的體積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20168月巴西里約熱內(nèi)盧舉辦的第31屆奧運會上,乒乓球比賽團(tuán)體決賽實行五場三勝制,且任何一方獲勝三場比賽即結(jié)束.甲、乙兩個代表隊最終進(jìn)入決賽,根據(jù)雙方排定的出場順序及以往戰(zhàn)績統(tǒng)計分析,甲隊依次派出的五位選手分別戰(zhàn)勝對手的概率如下表:

出場順序

1

2

3

4

5

獲勝概率

若甲隊橫掃對手獲勝(即30獲勝)的概率是,比賽至少打滿4場的概率為.

1)求,的值;

2)求甲隊獲勝場數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的函數(shù),當(dāng)時,取極大值,且函數(shù)的圖象關(guān)于原點對稱.

1)求的表達(dá)式;

2)試在函數(shù)的圖象上求兩點,使以這兩點為切點的切線互相垂直,且切點的橫坐標(biāo)都在上;

3)設(shè),,求證:

查看答案和解析>>

同步練習(xí)冊答案