【題目】f(x)=x3-3ax2+2bxx=1處有極小值-1.

(1)求a、b的值

(2)求出f(x)的單調區(qū)間;

(3)求f(x)的極大值.

【答案】(1),;(2)見解析;(3)

【解析】分析:(1)已知函數(shù)處有極小值-1,即,所以先求導函數(shù),再代入列方程組,即可解得的值
(2)分別解不等式0,即可得函數(shù)的單調增區(qū)間與單調遞減區(qū)間
(3)由(2)可得函數(shù)的單調性,從而求出函數(shù)的極大值

詳解:

(1) (x)=3x2-6ax+2b,由題意知

解之得a=,b=-

(2)由(1)知f(x)=x3-x2-x,(x)=3x2-2x-1=3(x+)(x-1)

(x)>0時,x>1或x<-,

(x)<0時,-<x<1

∴函數(shù)f(x)的單調增區(qū)間為(-∞,-)和(1,+∞),減區(qū)間為(-,1)

(3)由(2)得到函數(shù)的單調性,可得的極大值=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面凸四邊形中(凸四邊形指沒有角度數(shù)大于的四邊形),.

(1)若,,求

(2)已知,記四邊形的面積為.

① 求的最大值;

② 若對于常數(shù),不等式恒成立,求實數(shù)的取值范圍.(直接寫結果,不需要過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,中點,連接,則異面直線所成角的余弦值為_____

【答案】

【解析】

連接CD1CM,由四邊形A1BCD1為平行四邊形得A1BCD1,即∠CD1M為異面直線A1BD1M所成角,再由已知求△CD1M的三邊長,由余弦定理求解即可.

如圖,

連接,由,可得四邊形為平行四邊形,

,∴為異面直線所成角,

由正方體的棱長為1,中點,

,

中,由余弦定理可得,

∴異面直線所成角的余弦值為

故答案為:

【點睛】

本題考查異面直線所成角的求法,異面直線所成的角常用方法有:將異面直線平移到同一平面中去,達到立體幾何平面化的目的;或者建立坐標系,通過求直線的方向向量得到直線夾角或其補角.

型】填空
束】
16

【題目】中,角所對的邊分別是的中點,,,面積的最大值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為,半徑為1,該紙片上的等邊三角形的中心為.、、為圓上的點,,,分別是以,,為底邊的等腰三角形.沿虛線剪開后,分別以,,為折痕折起,,,使得、、重合,得到三棱錐.當的邊長變化時,所得三棱錐體積的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3

)求數(shù)列{an}的通項公式;

)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}中,a3=9,a5=17,記數(shù)列 的前n項和為Sn , 若 ,對任意的n∈N*成立,則整數(shù)m的最小值為(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系xOy中,圓C的方程為,且圓C與y軸交于M,N兩點(點N在點M的上方),直線與圓C交于A,B兩點。

(1)若,求實數(shù)k的值。

(2)設直線AM,直線BN的斜率分別為,若存在常數(shù)使得恒成立?若存在,求出a的值.若不存在請說明理由。

(3)若直線AM與直線BN相較于點P,求證點P在一條定直線上。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設獎300元,4格各設獎200元,其余4格各設獎100元,點擊某一格即顯示相應金額.某人在一張表中隨機不重復地點擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,鄭州經濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內的井字形快速交通網,還是輻射全國的米字形高鐵路網,鄭州的交通優(yōu)勢在同級別的城市內無能出其右.為了調查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中

(I)求的值;

(Ⅱ)求被調查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);

(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.

查看答案和解析>>

同步練習冊答案