【題目】如圖:一個(gè)圓錐的底面半徑為2,高為6,在其中有一個(gè)半徑為x的內(nèi)接圓柱.
(1)試用x表示圓柱的體積;
(2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大值是多少.

【答案】
(1)解:∵圓錐的底面半徑為2,高為6,

∴內(nèi)接圓柱的底面半徑為x時(shí),它的上底面截圓錐得小圓錐的高為3x

因此,內(nèi)接圓柱的高 h=6﹣3x;

∴圓柱的體積V=πx2(6﹣3x) (0<x<2)


(2)解:由(1)得,圓柱的側(cè)面積為

S側(cè)=2πx(6﹣3x)=6π(2x﹣x2 (0<x<2)

令t=2x﹣x2,當(dāng)x=1時(shí)tmax=1.可得當(dāng)x=1時(shí),( S側(cè)max=6π

∴當(dāng)圓柱的底面半徑為1時(shí),圓柱的側(cè)面積最大,側(cè)面積有最大值為6π.


【解析】(1)根據(jù)圓錐的底面半徑為2、高為6,可得內(nèi)接圓柱的半徑為x時(shí),它的高h(yuǎn)=6﹣3x,由此結(jié)合圓柱體積公式即可列出用x表示圓柱的體積的式子;(2)由(1)可得圓柱的側(cè)面積S側(cè)=6π(2x﹣x2),結(jié)合二次函數(shù)的單調(diào)性與最值,可得當(dāng)圓柱的底面半徑為1時(shí),圓柱的側(cè)面積最大,側(cè)面積有最大值為6π.
【考點(diǎn)精析】利用旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))對(duì)題目進(jìn)行判斷即可得到答案,需要熟知常見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ< , x∈R)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[﹣ , ]時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一圓心角為 ,半徑為12cm的扇形鐵皮(如圖).P,Q是弧AB上的動(dòng)點(diǎn)且劣弧 的長(zhǎng)為2πcm,過(guò)P,Q分別作與OA,OB平行或垂直的線,從扇形上裁剪出多邊形OHPRQT,將該多邊形面積表示為角α的函數(shù),并求出其最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過(guò)點(diǎn)P(1,0)作直線分別交射線OA,OB于點(diǎn)A,B.
(1)當(dāng)AB的中點(diǎn)在直線x﹣2y=0上時(shí),求直線AB的方程;
(2)當(dāng)△AOB的面積取最小值時(shí),求直線AB的方程.
(3)當(dāng)PAPB取最小值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式:(x﹣1)(x+a)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入,若該公司2015年全年投入研發(fā)資金超過(guò)130萬(wàn)元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該公司全年投入的研發(fā)資金開始超過(guò)200萬(wàn)元的年份是年.(參考數(shù)據(jù):lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=1+x﹣ + +…+ ;g(x)=1﹣x+ + ﹣…﹣ ;設(shè)函數(shù)F(x)=[f(x+3)]2015[g(x﹣4)]2016 , 且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為(
A.8
B.9
C.10
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線l交C于另一點(diǎn)B,交x軸的正半軸交于點(diǎn)D,且有|FA|=|FD|,當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形
(1)求C的方程
(2)延長(zhǎng)AF交拋物線于點(diǎn)E,過(guò)點(diǎn)E作拋物線的切線l1 , 求證:l1∥l.

查看答案和解析>>

同步練習(xí)冊(cè)答案