在數(shù)列中,,
(1)設(shè),求數(shù)列的通項公式;
(2)求數(shù)列的前項和

(1);(2).

解析試題分析:(1)在題中等式兩邊同時除以,則,即,利用累加法得;(2)根據(jù)第(1)題求出,利用分組求和,,后面括號式子利用錯位相加法求得結(jié)果.
試題解析:(1)由已知得,原式同除以,則,即,所以


……

累加,得
所以
由(1)得,
所以
設(shè),①
,②
①-②,得

所以,
所以
考點:1.累加法求通項公式;2.分組求和法和錯誤相減法求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項和,且,=225
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列,每年發(fā)放的電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;
(2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?



     
       
   

3
     
        
   
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N*,數(shù)列{bn}滿足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求數(shù)列{an·bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,.
(1)求
(2)設(shè),求證:為等比數(shù)列;
(3)求的前項積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,且當(dāng)時,,.記的階乘.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列為等差數(shù)列;
(3)若,求的前 項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項和;
(3)設(shè),數(shù)列的前項和為,求證:(其中).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,的前n項和為
(1)求;
(2)令=(),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知等差數(shù)列的前三項為,,, 其前項和為,
=             

查看答案和解析>>

同步練習(xí)冊答案