【題目】已知函數(shù),其中為常數(shù).

若曲線處的切線斜率為-2,求該切線的方程;

求函數(shù)上的最小值.

【答案】

【解析】

(1)先利用,求出a,進而寫出切點坐標,寫出的切線方程.

(2)對a分類討論,易判斷當或當時,在區(qū)間內(nèi)是單調(diào)的,根據(jù)單調(diào)性直接可得出最小值,

時,在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,又因為,將兩者比較大小求得結(jié)果.

求導得,由解得.

此時,所以該切線的方程為,即為所求.

,,所以區(qū)間內(nèi)單調(diào)遞減.

時,,在區(qū)間上單調(diào)遞減,故.

時,,在區(qū)間上單調(diào)遞增,故.

時,因為,,且在區(qū)間上單調(diào)遞增,結(jié)合零點存在定理可知,存在唯一,使得,且上單調(diào)遞增,在上單調(diào)遞減.的最小值等于中較小的一個值.

①當時,,故的最小值為.

②當時,,故的最小值為.

綜上所述,函數(shù)的最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】國際象棋比賽中.勝局一得1分,平一局得0.5分,負一局得0分。今有8名選手進行單循環(huán)比賽(每兩人均賽一局),賽完后、發(fā)現(xiàn)各選手的得分均不相同,當按得分由大到小排列好名次后,第四名選手得4.5分,第二名的得分等于最后四名選手得分總和.問前三名選手各得多少分?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),若滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界

1)設,判斷上是否是有界函數(shù),若是,說明理由,并寫出所有上界的值的集合;若不是,也請說明理由.

2)若函數(shù)上是以為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①命題,則的否命題為,則

的必要不充分條件;

命題,使得的否定是:,均有

④命題,則的逆否命題為真命題

其中所有正確命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)過點e是自然對數(shù)的底數(shù))作函數(shù)圖象的切線l,求直線l的方程;

2)求函數(shù)在區(qū)間)上的最大值;

3)若,且對任意恒成立,求k的最大值.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是( )

A. 命題,則的逆命題是真命題

B. 命題存在的否定是:任意

C. 命題“pq”為真命題,則命題“p”和命題“q”均為真命題

D. 已知,則的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點從坐標原點出發(fā)沿著拋物線移動到點,則在移動過程中當為最大時,點的橫坐標________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線),焦點為,直線交拋物線,兩點,的中點,且

(1)求拋物線的方程;

(2)若,求的最小值.

查看答案和解析>>

同步練習冊答案