【題目】已知函數(shù),其中為常數(shù).
若曲線在處的切線斜率為-2,求該切線的方程;
求函數(shù)在上的最小值.
【答案】
【解析】
(1)先利用,求出a,進而寫出切點坐標,寫出的切線方程.
(2)對a分類討論,易判斷當或當時,在區(qū)間內(nèi)是單調(diào)的,根據(jù)單調(diào)性直接可得出最小值,
當時,在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減, 故,又因為,,將兩者比較大小求得結(jié)果.
求導得,由解得.
此時,所以該切線的方程為,即為所求.
對,,所以在區(qū)間內(nèi)單調(diào)遞減.
當時,,在區(qū)間上單調(diào)遞減,故.
當時,,在區(qū)間上單調(diào)遞增,故.
當時,因為,,且在區(qū)間上單調(diào)遞增,結(jié)合零點存在定理可知,存在唯一,使得,且在上單調(diào)遞增,在上單調(diào)遞減.故的最小值等于和中較小的一個值.
①當時,,故的最小值為.
②當時,,故的最小值為.
綜上所述,函數(shù)的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】國際象棋比賽中.勝局一得1分,平一局得0.5分,負一局得0分。今有8名選手進行單循環(huán)比賽(每兩人均賽一局),賽完后、發(fā)現(xiàn)各選手的得分均不相同,當按得分由大到小排列好名次后,第四名選手得4.5分,第二名的得分等于最后四名選手得分總和.問前三名選手各得多少分?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),若滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界
(1)設,判斷在上是否是有界函數(shù),若是,說明理由,并寫出所有上界的值的集合;若不是,也請說明理由.
(2)若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①命題“若,則”的否命題為“若,則”;
②“”是“”的必要不充分條件;
③命題“,使得”的否定是:“,均有”;
④命題“若,則”的逆否命題為真命題
其中所有正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)過點(e是自然對數(shù)的底數(shù))作函數(shù)圖象的切線l,求直線l的方程;
(2)求函數(shù)在區(qū)間()上的最大值;
(3)若,且對任意恒成立,求k的最大值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( )
A. 命題“若,則”的逆命題是真命題
B. 命題“存在”的否定是:“任意”
C. 命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D. 已知,則“”是“”的充分不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com