【題目】在直三棱柱中,,,點(diǎn),分別為棱,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析下(2)
【解析】
(1)取的中點(diǎn),連接,,證明,進(jìn)而證得得解;(2)在平面內(nèi)作交于點(diǎn),以為原點(diǎn),,、分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.求得平面的法向量,利用線面角的向量公式求解
(1)取的中點(diǎn),連接,,
則在中,,,
又點(diǎn)是的中點(diǎn),
所以.
而且,
所以,
所以四邊形是平行四邊形,
所以,
又平面,平面,
所以平面.
(2)在平面內(nèi)作交于點(diǎn),
以為原點(diǎn),,、分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則,,,,,
所以,,.
設(shè)平面的一個(gè)法向量為,
則即
取,得,
設(shè)直線與平面所成角為,
則.
即直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形是梯形,如圖,,,,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(如圖2),且
(1)求證:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ex+sinx+ax(a∈R).
(Ⅰ)當(dāng)a=﹣2時(shí),求證:f(x)在(﹣∞,0)上單調(diào)遞減;
(Ⅱ)若對(duì)任意x≥0,f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若f(x)有最小值,請(qǐng)直接給出實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】南北朝時(shí)期的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為、,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為、,則命題:“、相等”是命題“、總相等”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線長(zhǎng)度相等.以塔底座的邊作方形.作方圓圖,會(huì)發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過(guò)米,則該木塔的高度可能是(參考數(shù)據(jù):)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量(單位:克)分別在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400]中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣的方法從質(zhì)量為[250,300),[300,350)內(nèi)的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在[300,350)內(nèi)的概率;
(2)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10 000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:A方案:所有芒果以10元/千克收購(gòu);B方案:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu).通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求實(shí)數(shù),的值:
(2)求證:當(dāng)時(shí),在上有兩個(gè)極值點(diǎn):
(3)設(shè),若在單調(diào)遞減,求實(shí)數(shù)的取值范圍.(其中為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:(a>b>0)的焦距為2,且過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標(biāo)原點(diǎn)O為△BMN的重心,求點(diǎn)O到直線MN距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】千百年來(lái),人們一直在通過(guò)不同的方式傳遞信息.在古代,烽火狼煙、飛鴿傳書、快馬驛站等通信方式被人們廣泛傳知;第二次工業(yè)革命后,科技的進(jìn)步帶動(dòng)了電訊事業(yè)的發(fā)展,電報(bào)電話的發(fā)明讓通信領(lǐng)域發(fā)生了翻天覆地的變化;之后,計(jì)算機(jī)和互聯(lián)網(wǎng)的出現(xiàn)則.使得“千里眼”“順風(fēng)耳”變?yōu)楝F(xiàn)實(shí)……此時(shí)此刻,5G的到來(lái)即將給人們的生活帶來(lái)顛覆性的變革,“5G領(lǐng)先”一方面是源于我國(guó)項(xiàng)層設(shè)計(jì)的宏觀布局,另一方面則來(lái)自于政府高度重視、企業(yè)積極搶灘、企業(yè)層面的科技創(chuàng)新能力和先發(fā)優(yōu)勢(shì).某科技創(chuàng)新公司基于領(lǐng)先技術(shù)的支持,豐富的移動(dòng)互聯(lián)網(wǎng)應(yīng)用等明顯優(yōu)勢(shì),隨著技術(shù)的不斷完善,該公司的5G經(jīng)濟(jì)收入在短期內(nèi)逐月攀升,業(yè)內(nèi)預(yù)測(cè),該創(chuàng)新公司在第1個(gè)月至第7個(gè)月的5G經(jīng)濟(jì)收入y(單位:百萬(wàn)元)關(guān)于月份x的數(shù)據(jù)如下表:
時(shí)間(月份) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
收入(百萬(wàn)元) | 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖:
(1)為了更充分運(yùn)用大數(shù)據(jù)、人工智能、5G等技術(shù),公司需要派出員工實(shí)地考察檢測(cè)產(chǎn)品性能和使用狀況,公司領(lǐng)導(dǎo)要從報(bào)名的五名科技人員A、B、C、D、E中隨機(jī)抽取3個(gè)人前往,則A、B同時(shí)被抽到的概率為多少?
(2)根據(jù)散點(diǎn)圖判斷,與(a,b,c,d均為大于零的常數(shù))哪一個(gè)適宜作為5G經(jīng)濟(jì)收入y關(guān)于月份x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)并根據(jù)你判斷結(jié)果及表中的數(shù)據(jù),求出y關(guān)于x的回歸方程;
(3)請(qǐng)你預(yù)測(cè)該公司8月份的5G經(jīng)濟(jì)收入.
參考數(shù)據(jù):
462 | 10.78 | 2711 | 50.12 | 2.82 | 3.47 |
其中設(shè),
參考公式:
對(duì)于一組具有線性相關(guān)系的數(shù)據(jù)(,2,3,…,n),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com