【題目】已知拋物線C1:x2=2py(p>0),圓C2:x2+y2﹣8y+12=0的圓心M到拋物線C1的準(zhǔn)線的距離為,點(diǎn)P是拋物線C1上一點(diǎn),過(guò)點(diǎn)P,M的直線交拋物線C1于另一點(diǎn)Q,且|PM|=2|MQ|,過(guò)點(diǎn)P作圓C2的兩條切線,切點(diǎn)為A、B.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)求直線PQ的方程及的值.
【答案】(Ⅰ)x2=2y;(Ⅱ)21
【解析】
(Ⅰ)由已知條件推導(dǎo)出4,由此能求出拋物線C1的方程.
(Ⅱ)設(shè)PQ的方程:y=kx+4,由,得x2﹣2kx﹣8=0,由此利用韋達(dá)定理結(jié)合已知條件能求出直線PQ的方程及的值.
(Ⅰ),∴M(0,4),
拋物線的準(zhǔn)線方程是y,
依題意:4,∴p=1,
∴拋物線C1的方程為:x2=2y.
(Ⅱ)設(shè)PQ的方程:y=kx+4,
由,得x2﹣2kx﹣8=0,設(shè)P(x1,y1),Q(x2,y2),
則,
∵|PM|=2|MQ|,∴,∴﹣x1=2x2,①
又x1+x2=2k,…②,x1x2=﹣8,③,
由①②③得k=±1,
∴PQ的方程為:y=±x+4.
取PQ的方程:y=x+4,和拋物線x2=2y,聯(lián)立得P點(diǎn)坐標(biāo)為P(4,8)
∴||=4,連接AM,BM,||=||,
設(shè)∠APM=α,則sinα,
∴||||cos2α
=28(1﹣2sin2α)=21.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,直線,圓的方程為,直線被圓截得的弦長(zhǎng)與橢圓的短軸長(zhǎng)相等,橢圓的左頂點(diǎn)為,上頂點(diǎn)為.
(1)求橢圓的方程;
(2)已知經(jīng)過(guò)點(diǎn)且斜率為直線與橢圓有兩個(gè)不同的交點(diǎn)和,請(qǐng)問(wèn)是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線交y軸正半軸于點(diǎn)B,且有,當(dāng)點(diǎn)A的縱坐標(biāo)為6時(shí),為正三角形.
(1)求C的方程;
(2)若直線,且和C有且只有一個(gè)公共點(diǎn)D,證明:直線AD過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,,,,是EA的中點(diǎn)(如圖1),將沿CD折起到圖2中的位置,得到四棱錐是.
(1)求證:平面PDA;
(2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和軸上的定點(diǎn),過(guò)拋物線焦點(diǎn)作一條直線交于、兩點(diǎn),連接并延長(zhǎng),交于、兩點(diǎn).
(1)求證:直線過(guò)定點(diǎn);
(2)求直線與直線最大夾角為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,(為常數(shù))對(duì)于任意的恒成立.
(1)若,求的值;
(2)證明:數(shù)列是等差數(shù)列;
(3)若,關(guān)于的不等式有且僅有兩個(gè)不同的整數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)區(qū)間;
(2)用表示中的最大值,為的導(dǎo)函數(shù),設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2,點(diǎn)F為AB的中點(diǎn),點(diǎn)E為線段A1C1上的動(dòng)點(diǎn).
(1)求證:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面體A1B1EF的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com