【題目】已知直線:,圓:.
(1)判斷直線與圓的位置關(guān)系,并證明你的結(jié)論;
(2)直線過直線的定點且,若與圓交與兩點,與圓交與 兩點,求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓C的標準方程;
(2)若直線與橢圓相交于、兩點,且,求證:的面積為定值并求出定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在單調(diào)遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.
(1)①求證:數(shù)列為等差數(shù)列;
②求數(shù)列通項公式;
(2)設(shè)數(shù)列的前項和為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列判斷:①一條直線和一點確定一個平面;②兩條直線確定一個平面;③三角形和梯形一定是平面圖形;④三條互相平行的直線一定共面其中正確的是_______.(寫出所有正確判斷的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A. , 為不共線向量,若,則
B. 若, 為平面內(nèi)兩個不相等向量,則平面內(nèi)任意向量都可以表示為
C. 若, ,則與不一定共線
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點數(shù),分別記為.
(1)若記“”為事件,求事件發(fā)生的概率;
(2)若記“”為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
⑴從區(qū)間內(nèi)任取一個實數(shù),設(shè)事件表示“函數(shù)在區(qū)間上有兩個不同的零點”,求事件發(fā)生的概率;
⑵若聯(lián)系擲兩次一顆均勻的骰子(骰子六個面上標注的點數(shù)分別為)得到的點數(shù)分別為和,記事件表示“在上恒成立”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行了一次“環(huán)保知識競賽”活動. 為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的,的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取3名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的3名同學中得分在[80,90)的學生人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當x∈[1,4]時,求函數(shù)的值域;
(2)如果對任意的x∈[1,4],不等式恒成立,求實數(shù)k的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com