【題目】已知函數(shù),,.
(1)討論函數(shù)的單調(diào)性;
(2)證明:函數(shù)在定義域上只有一個零點
【答案】(1)答案見解析;(2)證明見解析.
【解析】
(1)首先求出函數(shù)的導函數(shù),令得或,再對分類討論可得;
(2)由(1)函數(shù)的單調(diào)性結(jié)合零點存在性定理,分類討論計算可得;
解:(1),,
令得或,易知,當時,;當時,,
①當時,,故在單調(diào)遞減;
②當時,令得或,令得,
故在,單調(diào)遞減,在單調(diào)遞增;
③當時,令得或,令得,
故在,單調(diào)遞減,在單調(diào)遞增.
綜上,當時,在單調(diào)遞減;
當時,在,單調(diào)遞減,在單調(diào)遞增;
當時,在,單調(diào)遞減,在單調(diào)遞增.
(2)由(1)知,①當時,在單調(diào)遞減;
且,
,即,故函數(shù)在上只有一個零點.
②當時,在,單調(diào)遞減,在單調(diào)遞增;故的極小值為,因此在上無零點;的極大值為,又,,故在上有一個零點,因此,函數(shù)在上只有一個零點.
③當時,在,單調(diào)遞減,在單調(diào)遞增.故的極小值為,又,,故在上有一個零點,的極大值為,又,故在上無零點,因此,函數(shù)在上只有一個零點.
綜上,函數(shù)在上只有一個零點.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,則當時,討論的單調(diào)性;
(2)若,且當時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】健身館某項目收費標準為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標準如下:
消費次數(shù) | 第1次 | 第2次 | 第3次 | 不少于4次 |
收費比例 | 0.95 | 0.90 | 0.85 | 0.80 |
現(xiàn)隨機抽取了100位會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:
消費次數(shù) | 1次 | 2次 | 3次 | 不少于4次 |
頻數(shù) | 60 | 25 | 10 | 5 |
假設該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:
(1)估計1位會員至少消費兩次的概率
(2)某會員消費4次,求這4次消費獲得的平均利潤;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個球在每一次被取出的機會是等可能的.
(Ⅰ)求袋中原有白球的個數(shù):
(Ⅱ)求取球次數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學名著,它在幾何學中的研究比西方早1000多年,在《九章算術》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,.
(1)求證:四棱錐為陽馬;
(2)若,當鱉膈體積最大時,求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報廢的出租車,現(xiàn)有采購成本分別為萬元/輛和萬元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:
(1)填寫下表,并判斷是否有的把握認為出租車的使用壽命年數(shù)與汽車車型有關?
(2)從和的車型中各隨機抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學期望;
(3)根據(jù)公司要求,采購成本由出租公司負責,平均每輛出租車每年上交公司萬元,其余維修和保險等費用自理.假設每輛出租車的使用壽命都是整數(shù)年,用頻率估計每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負責人,會選擇采購哪款車型?
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinθ=2.
(1)M為曲線C1上的動點,點P在線段OM上,且滿足,求點P的軌跡C2的直角坐標方程;
(2)曲線C2上兩點與點B(ρ2,α),求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),直線,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求直線l和曲線C的極坐標方程;
(2)若直線與直線l相交于點A,與曲線C相交于不同的兩點M,N.求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com