【題目】已知函數(shù) .

(1)若函數(shù)上是增函數(shù),求正數(shù)的取值范圍;

(2)當(dāng)時(shí),設(shè)函數(shù)的圖象與x軸的交點(diǎn)為,,曲線,兩點(diǎn)處的切線斜率分別為,,求證:+ .

【答案】(1); (2)見解析.

【解析】

(1)由題意,求得函數(shù)的導(dǎo)數(shù),設(shè),分離參數(shù)轉(zhuǎn)化為上恒成立,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,得到函數(shù)的最值,即可得到實(shí)數(shù)的取值范圍;

(2)由,得,,不妨設(shè),利用導(dǎo)數(shù)求得兩點(diǎn)的斜率,得到+ ,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最大值,即可作出證明.

(1) ,∴,

設(shè),

函數(shù)上是增函數(shù),∴ 上恒成立,即上恒成立,

設(shè),則,

,∴,∴上是增函數(shù),

,由上恒成立,得,

,即的取值范圍是.

(2) ,,得,不妨設(shè).

,,, + ,

設(shè),則時(shí),時(shí),,所以的極大值點(diǎn),所以的極大值即最大值為,即,

,∴,

,∴+ .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次學(xué)科測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

則參加測(cè)試的總?cè)藬?shù)為______,分?jǐn)?shù)在之間的人數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為F1-1,0)、F21,0),短軸的兩個(gè)端點(diǎn)分別為B1,B2

1)若△F1B1B2為等邊三角形,求橢圓C的方程;

2)若橢圓C的短軸長(zhǎng)為2,過點(diǎn)F2的直線l與橢圓C相交于PQ兩點(diǎn),且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志為連續(xù)天,每天新增疑似病例不超過.過去日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下,則一定符合該標(biāo)志的是(

甲地:總體平均數(shù),且中位數(shù)為;

乙地:總體平均數(shù)為,且標(biāo)準(zhǔn)差;

丙地:總體平均數(shù),且極差;

丁地:眾數(shù)為,且極差

A.甲地B.乙地C.丙地D.丁地

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)試探究函數(shù)在定義域內(nèi)是否存在零點(diǎn),若存在,請(qǐng)指出有幾個(gè)零點(diǎn);若不存在,請(qǐng)說明理由;

(Ⅲ)若,且上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計(jì)

男生

5

女生

10

合計(jì)

50

已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有99%的把握認(rèn)為“喜愛打籃球與性別有關(guān)”?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

Ⅰ)若函數(shù)處的切線與直線平行,的值;

Ⅱ)若對(duì)于定義域內(nèi)的任意,總存在使得,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列滿足為數(shù)列的前項(xiàng)和.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和;

3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.

(Ⅰ)已知數(shù)列:1,m+1m2是“K數(shù)列”,求實(shí)數(shù)的取值范圍;

(Ⅱ)是否存在首項(xiàng)為-1的等差數(shù)列為“K數(shù)列”,且其前n項(xiàng)和滿足

?若存在,求出的通項(xiàng)公式;若不存在,請(qǐng)說明理由;

(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案