【題目】設(shè)M={x|0≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形:
其中,能表示從集合M到集合N的函數(shù)關(guān)系的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
【答案】B
【解析】解:①中,因?yàn)樵诩螹中當(dāng)1<x≤2時(shí),在N中無(wú)元素與之對(duì)應(yīng),所以①不是;
②中,對(duì)于集合M中的任意一個(gè)數(shù)x,在N中都有唯一的數(shù)與之對(duì)應(yīng),所以②是;
③中,x=2對(duì)應(yīng)元素y=3N,所以③不是;
④中,當(dāng)x=1時(shí),在N中有兩個(gè)元素與之對(duì)應(yīng),所以④不是.因此只有②滿足題意.
故選B.
【考點(diǎn)精析】本題主要考查了函數(shù)的概念及其構(gòu)成要素的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)三要素是定義域,對(duì)應(yīng)法則和值域,而定義域和對(duì)應(yīng)法則是起決定作用的要素,因?yàn)檫@二者確定后,值域也就相應(yīng)得到確定,因此只有定義域和對(duì)應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在海島上有一座海拔的山峰,山頂設(shè)有一個(gè)觀察站,有一艘輪船按一固定方向做勻速直線航行,上午時(shí),測(cè)得此船在島北偏東、俯角為的處,到時(shí),又測(cè)得該船在島北偏西、俯角為的處.
(1)求船的航行速度;
(2)求船從到行駛過(guò)程中與觀察站的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)對(duì)于任意實(shí)數(shù)x,不等式sin x+cos x>m恒成立,求實(shí)數(shù)m的取值范圍;
(2)存在實(shí)數(shù)x,不等式sin x+cos x>m有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)以橢圓的長(zhǎng)軸端點(diǎn)為焦點(diǎn),且經(jīng)過(guò)點(diǎn)P(5, );
(2)過(guò)點(diǎn)P1(3,-4 ),P2(,5).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家為了鼓勵(lì)節(jié)約用水,實(shí)行階梯用水收費(fèi)制度,價(jià)格參照表如表:
用水量(噸) | 單價(jià)(元/噸) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超過(guò)20噸不超過(guò)35噸的部分按3元/噸收費(fèi) |
35以上 | 4 | 超過(guò)35噸的部分按4元/噸收費(fèi) |
(1)若小明家10月份用水量為30噸,則應(yīng)繳多少水費(fèi)?
(2)若小明家10月份繳水費(fèi)99元,則小明家10月份用水多少噸?
(3)寫出水費(fèi)y與用水量x之間的函數(shù)關(guān)系式,并畫出函數(shù)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】音樂(lè),要么不出現(xiàn)音樂(lè);每盤游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得100分,沒(méi)有出現(xiàn)音樂(lè)則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓出現(xiàn)音樂(lè)相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂(lè)的概率是多少?
(3)玩過(guò)這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒(méi)有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩個(gè)容器,甲容器容量為,裝滿純酒精,乙容器容量為,其中裝有體積為的水(:?jiǎn)挝唬?/span> ).現(xiàn)將甲容器中的液體倒人乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒人甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設(shè)操作過(guò)程中溶液體積變化忽略不計(jì).設(shè)經(jīng)過(guò)次操作之后,乙容器中含有純酒精(單位: ),下列關(guān)于數(shù)列的說(shuō)法正確的是( )
A. 當(dāng)時(shí),數(shù)列有最大值
B. 設(shè),則數(shù)列為遞減數(shù)列
C. 對(duì)任意的,始終有
D. 對(duì)任意的,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()與軸交于, 兩點(diǎn), 為橢圓的左焦點(diǎn),且是邊長(zhǎng)為2的等邊三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于, 兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(與不重合),則直線與軸交于點(diǎn),求面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com