【題目】給出兩個(gè)命題:
命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為
命題乙:函數(shù)y=(2a2﹣a)x為增函數(shù).
(1)甲、乙至少有一個(gè)是真命題;
(2)甲、乙有且只有一個(gè)是真命題;
分別求出符合(1)(2)的實(shí)數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)甲為真命題時(shí),△=(a﹣1)2﹣4a2<0,解得a 或a<﹣1,即A={a|a 或a<﹣1}

乙為真命題時(shí),2a2﹣a>1,解得a>1或a<

即B={a|a>1或a<﹣ }.

甲、乙至少有一個(gè)是真命題,應(yīng)取A,B的并集,此時(shí)a 或a<


(2)解:甲、乙有且只有一個(gè)是真命題,有兩種情況:

當(dāng)甲真乙假時(shí), ,

當(dāng)甲假乙真時(shí),

綜上


【解析】分別判斷兩個(gè)命題的真假,然后確定實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年備受矚目的二十國(guó)集團(tuán)領(lǐng)導(dǎo)人第十一次峰會(huì)于9月4~5日在杭州舉辦,杭州G20籌委會(huì)已經(jīng)招募培訓(xùn)翻譯聯(lián)絡(luò)員1000人、駕駛員2000人,為測(cè)試培訓(xùn)效果,采取分層抽樣的方法從翻譯聯(lián)絡(luò)員、駕駛員中共隨機(jī)抽取60人,對(duì)其做G20峰會(huì)主題及相關(guān)服務(wù)職責(zé)進(jìn)行測(cè)試,將其所得分?jǐn)?shù)(分?jǐn)?shù)都在60~100之間)制成頻率分布直方圖如下圖所示,若得分在90分及其以上(含90分)者,則稱其為“G20通”.
(Ⅰ)能否有90%的把握認(rèn)為“G20通”與所從事工作(翻譯聯(lián)絡(luò)員或駕駛員)有關(guān)?
(Ⅱ)從參加測(cè)試的成績(jī)?cè)?0分以上(含80分)的駕駛員中隨機(jī)抽取4人,4人中“G20通”的人數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.

P(K2≥k0

0.10

0.05

0.010

0.001

k0

2.706

3.841

6.635

10.828

附參考公式與數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin2 +x)﹣ cos2x﹣1,x∈R,若函數(shù)k(x)=f(x+a)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱,且α∈(0,π),則α=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)體服裝店經(jīng)營(yíng)某種服裝,該服裝店每天所獲利潤(rùn)y(元)與每天售出這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:

x

3

4

5

6

7

8

9

y

66

69

74

81

89

90

91

(1)求利潤(rùn)y與每天售出件數(shù)x之間的回歸方程 (回歸直線的斜率用分?jǐn)?shù)表示).

(2)若該服裝店某天銷售服裝13件,估計(jì)可獲利潤(rùn)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣12x+b,則下列結(jié)論正確的是(
A.函數(shù)f(x)在(﹣∞,﹣1)上單調(diào)遞增
B.函數(shù)f(x)在(﹣∞,﹣1)上單調(diào)遞減
C.若b=﹣6,則函數(shù)f(x)的圖象在點(diǎn)(﹣2,f(﹣2))處的切線方程為y=10
D.若b=0,則函數(shù)f(x)的圖象與直線y=10只有一個(gè)公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1﹣ ﹣lnx(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)( ,f( ))處的切線方程;
(2)當(dāng)a≥0時(shí),記函數(shù)Γ(x)= ax2+(1﹣2a)x+ ﹣1+f(x),試求Γ(x)的單調(diào)遞減區(qū)間;
(3)設(shè)函數(shù)h(a)=3λa﹣2a2(其中λ為常數(shù)),若函數(shù)f(x)在區(qū)間(0,2)上不存在極值,求h(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,D是到原點(diǎn)的距離不大于1的點(diǎn)構(gòu)成的區(qū)域,E是滿足不等式組 的點(diǎn)(x,y)構(gòu)成的區(qū)域,向D中隨機(jī)投一點(diǎn),則所投的點(diǎn)落在E中的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側(cè)有A,B兩個(gè)蔬菜基地,江的另一側(cè)點(diǎn)C處有一個(gè)超市.已知A、B、C中任意兩點(diǎn)間的距離為20千米.超市欲在AB之間建一個(gè)運(yùn)輸中轉(zhuǎn)站D,A,B兩處的蔬菜運(yùn)抵D處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵C處.由于A,B兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從A處出發(fā)的運(yùn)輸費(fèi)為每千米2元,從B處出發(fā)的運(yùn)輸費(fèi)為每千米1元,貨輪的運(yùn)輸費(fèi)為每千米3元.

(1)設(shè)∠ADC=α,試將運(yùn)輸總費(fèi)用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問中轉(zhuǎn)站D建在何處時(shí),運(yùn)輸總費(fèi)用S最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=xex﹣asinxcosx(a∈R,其中e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)若對(duì)于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間 上有兩個(gè)零點(diǎn)?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案