【題目】如圖,江的兩岸可近似的看成兩平行的直線(xiàn),江岸的一側(cè)有A,B兩個(gè)蔬菜基地,江的另一側(cè)點(diǎn)C處有一個(gè)超市.已知A、B、C中任意兩點(diǎn)間的距離為20千米.超市欲在A(yíng)B之間建一個(gè)運(yùn)輸中轉(zhuǎn)站D,A,B兩處的蔬菜運(yùn)抵D處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵C處.由于A(yíng),B兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從A處出發(fā)的運(yùn)輸費(fèi)為每千米2元,從B處出發(fā)的運(yùn)輸費(fèi)為每千米1元,貨輪的運(yùn)輸費(fèi)為每千米3元.
(1)設(shè)∠ADC=α,試將運(yùn)輸總費(fèi)用S(單位:元)表示為α的函數(shù)S(α),并寫(xiě)出自變量的取值范圍;
(2)問(wèn)中轉(zhuǎn)站D建在何處時(shí),運(yùn)輸總費(fèi)用S最?并求出最小值.
【答案】
(1)解:由題在△ACD中,∵∠CAD=∠ABC=∠ACB= ,∠CDA=α,∴∠ACD= ﹣α.
又AB=BC=CA=20,△ACD中,
由正弦定理知 = = ,得CD= ,AD= ,
∴S=2AD+BD+3CD=AD+3CD+20= + +20
=10 +20 ( <α< )
(2)解:S′=10 ,令S′=0,得cosα=﹣
當(dāng)cosα<﹣ 時(shí),S′<0;當(dāng)cosα>﹣ 時(shí),S′>0,∴當(dāng)cosα=﹣ 時(shí)S取得最小值.
此時(shí),sinα= ,AD=10﹣ ,
∴中轉(zhuǎn)站距A處10﹣ 千米時(shí),運(yùn)輸成本S最小
【解析】(1)由題在△ACD中,由正弦定理求得CD、AD的值,即可求得運(yùn)輸成本S的解析式.(2)利用導(dǎo)數(shù)求得cosα=﹣ 時(shí),函數(shù)S取得極小值,由此可得中轉(zhuǎn)點(diǎn)D到A的距離以及S的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)高三年級(jí)的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生體重(單位:kg)的數(shù)據(jù)進(jìn)行整理后分為五組,并繪制出頻率分布直方圖(如圖所示).根據(jù)一般標(biāo)準(zhǔn),高三男生的體重超過(guò)65 kg屬于偏胖,低于55 kg屬于偏瘦.已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25,0.20,0.10,0.05,第二小組的頻數(shù)為400,則該校高三年級(jí)男生的總數(shù)和體重正常的頻率分別為( )
A. 1000,0.50 B. 800,0.50
C. 800,0.60 D. 1000,0.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出兩個(gè)命題:
命題甲:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;
命題乙:函數(shù)y=(2a2﹣a)x為增函數(shù).
(1)甲、乙至少有一個(gè)是真命題;
(2)甲、乙有且只有一個(gè)是真命題;
分別求出符合(1)(2)的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次試驗(yàn)中,兩個(gè)試驗(yàn)數(shù)據(jù)x,y的統(tǒng)計(jì)結(jié)果如下面的表格1所示.
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 4 | 5 |
表格1
(1)在給出的坐標(biāo)系中畫(huà)出數(shù)據(jù)x,y的散點(diǎn)圖.
(2)補(bǔ)全表格2,根據(jù)表格2中的數(shù)據(jù)和公式求下列問(wèn)題.
①求出y關(guān)于x的回歸直線(xiàn)方程中的.
②估計(jì)當(dāng)x=10時(shí),的值是多少?
表格2
序號(hào) | x | y | x2 | xy |
1 | 1 | 2 | 1 | 2 |
2 | 2 | 3 | 4 | 6 |
3 | 3 | 4 | 9 | 12 |
4 | 4 | 4 | 16 | 16 |
5 | 5 | 5 | 25 | 25 |
∑ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,設(shè)直線(xiàn)過(guò)點(diǎn)A( , ),B(3, ),且直線(xiàn)與曲線(xiàn)C:ρ=2rsinθ(r>0)有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是 ( )
A. “x<1”是“l(fā)og2(x+1)<1”的充分不必要條件
B. 命題“x>0,2x>1”的否定是“x0≤0,≤1”
C. 命題“若a≤b,則ac2≤bc2”的逆命題是真命題
D. 命題“若a+b≠5,則a≠2或b≠3”的逆否命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: =1(a>1)的左、右頂點(diǎn)分別為A、B,P是橢圓C上任一點(diǎn),且點(diǎn)P位于第一象限.直線(xiàn)PA交y軸于點(diǎn)Q,直線(xiàn)PB交y軸于點(diǎn)R.當(dāng)點(diǎn)Q坐標(biāo)為(0,1)時(shí),點(diǎn)R坐標(biāo)為(0,2)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證: 為定值;
(3)求證:過(guò)點(diǎn)R且與直線(xiàn)QB垂直的直線(xiàn)經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)定點(diǎn)P(4,0),且在y軸上截得的弦MN的長(zhǎng)為8.
(1)求動(dòng)圓圓心C的軌跡方程;
(2)過(guò)點(diǎn)(2,0)的直線(xiàn)l與動(dòng)圓圓心C的軌跡交于A,B兩點(diǎn),求證:是一個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N+)局,根據(jù)以往比賽勝負(fù)的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏(yíng)得比賽.記甲贏(yíng)得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com