【題目】為了選拔參加自行車比賽的選手,對自行車運動員甲、乙兩人在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計甲、乙兩運動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.
【答案】(1)見解析(2)派乙
【解析】試題分析:(1)由已知畫莖葉圖,由莖葉圖能得到中位數(shù)和甲、乙兩人的最大速度等信息;(2)由已知求出甲、乙兩運動員的最大速度的平均數(shù)和方差,由乙的最大速度比甲穩(wěn)定,得到派乙參加比賽更合適.
試題解析:(1)畫莖葉圖如右圖,可以看出,甲、乙兩人的最大速度都是均勻分布的,只是甲的最大速度的中位數(shù)是33,乙的最大速度的中位數(shù)是33. 5,因此從中位數(shù)看乙的情況比甲好.
(2) 甲,
乙,
所以他們的最大速度的平均數(shù)相同,再看方差, ,則,故乙的最大速度比甲穩(wěn)定,所以派乙參加比賽更合適.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為, ,過點與軸垂直的直線交橢圓于、兩點, 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,直線: 與軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為推行“高效課堂”教學法,某數(shù)學老師分別用傳統(tǒng)教學和“高效課堂”兩種不同的教學方法,在同一年級的甲、乙兩個同層次的班進行教學實驗,為了解教學效果,期末考試后, 分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如圖(記成績不低于70分者為“成績優(yōu)良”).
(1)分別計算甲、乙兩班20個樣本中,數(shù)學成績前十名的平均分,并大致判斷那種教學方法的教學效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學方法有關”?
附:
獨立性檢驗臨界表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.
(1)分別求出兩人得分的平均數(shù)與方差;
(2)根據(jù)圖和上面算得的結果,對兩人的訓練成績作出評價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市需對某環(huán)城快速車道進行限速,為了調(diào)研該道路車速情況,于某個時段隨機對輛車的速度進行取樣,測量的車速制成如下條形圖:
經(jīng)計算:樣本的平均值,標準差,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現(xiàn)規(guī)定車速小于或車速大于是需矯正速度.
(1)從該快速車道上所有車輛中任取個,求該車輛是需矯正速度的概率;
(2)從樣本中任取個車輛,求這個車輛均是需矯正速度的概率;
(3)從該快速車道上所有車輛中任取個,記其中是需矯正速度的個數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為14分)已知定義域為R的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當時,求函數(shù)在處的切線方程;
(Ⅱ)令,求函數(shù)的極值;
(Ⅲ)若,正實數(shù), 滿足,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com