【題目】某地對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,分別記錄了3月1日到3月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
他們所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;并預報當溫差為時的種子發(fā)芽數(shù).
參考公式:,其中
【答案】(1);(2),17顆.
【解析】
(1)先求出從5組數(shù)據(jù)中選取2組數(shù)據(jù)一共有的情況,再求抽到相鄰的兩組數(shù)據(jù)一共有的情況,然后可得概率;(2)根據(jù)已知可得,,按照公式分別求出和,即得線性回歸方程,將代入方程,即得溫差為時的種子發(fā)芽數(shù)。
(1)“設抽到相鄰的兩組數(shù)據(jù)為事件A”,從5組數(shù)據(jù)中選取2組數(shù)據(jù)共10種 情況:(1,2),(1,3)(1,4)(1,5)(2,3),(2,4)(2,5)(3,4)(3,5)(4,5) .
其中事件A的有:(1,2),(2,3),(3,4),(4,5),
;
(2)由數(shù)據(jù)求得,
代入公式得:,
∴線性回歸方程為: ,
當時,,
當溫差為8℃時種子發(fā)芽數(shù)為17顆.
科目:高中數(shù)學 來源: 題型:
【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,(ω>0),且函數(shù)的兩個相鄰對稱中心之間的距離是.
(1)求;
(2)若函數(shù)在上恰有兩個零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的左頂點為,離心率為,過點的直線與橢圓交于另一點,點為軸上的一點.
(1)求橢圓的標準方程;
(2)若是以點為直角頂點的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和滿足.
(1)證明數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式.
(2)若不等式,對任意恒成立,求的取值范圍.
(3)記數(shù)列的前項和為,是否存在正整數(shù),使得成立,若存在,求出所有符合條件的有序?qū)崝?shù)對(,);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為提高城市居民生活幸福感,某城市公交公司大力確保公交車的準點率,減少居民乘車候車時間為此,該公司對某站臺乘客的候車時間進行統(tǒng)計乘客候車時間受公交車準點率、交通擁堵情況、節(jié)假日人流量增大等情況影響在公交車準點率正常、交通擁堵情況正常、非節(jié)假日的情況下,乘客候車時間隨機變量滿足正態(tài)分布在公交車準點率正常、交通擁堵情況正常、非節(jié)假日的情況下,調(diào)查了大量乘客的候車時間,經(jīng)過統(tǒng)計得到如圖頻率分布直方圖.
(1)在直方圖各組中,以該組區(qū)間的中點值代表該組中的各個值,試估計的值;
(2)在統(tǒng)計學中,發(fā)生概率低于千分之三的事件叫小概率事件,一般認為,在正常情況下,一次試驗中,小概率事件是不能發(fā)生的在交通擁堵情況正常、非節(jié)假日的某天,隨機調(diào)查了該站的10名乘客的候車時間,發(fā)現(xiàn)其中有3名乘客候車時間超過15分鐘,試判斷該天公交車準點率是否正常,說明理由.
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線:(參數(shù)),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,點的極坐標為.
(1)將曲線的極坐標方程化為直角坐標方程,并求出點的直角坐標;
(2)設為曲線上的點,求中點到曲線上的點的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】武漢某科技公司為提高市場銷售業(yè)績,現(xiàn)對某產(chǎn)品在部分營銷網(wǎng)點進行試點促銷活動.現(xiàn)有兩種活動方案,在每個試點網(wǎng)點僅采用一種活動方案,經(jīng)統(tǒng)計,2018年1月至6月期間,每件產(chǎn)品的生產(chǎn)成本為10元,方案1中每件產(chǎn)品的促銷運作成本為5元,方案2中每件產(chǎn)品的促銷運作成本為2元,其月利潤的變化情況如圖①折線圖所示.
(1)請根據(jù)圖①,從兩種活動方案中,為該公司選擇一種較為有利的活動方案(不必說明理由);
(2)為制定本年度該產(chǎn)品的銷售價格,現(xiàn)統(tǒng)計了8組售價xi(單位:元/件)和相應銷量y(單位:件)(i=1,2,…8)并制作散點圖(如圖②),觀察散點圖可知,可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到整數(shù));
參考公式及數(shù)據(jù):40,660,xiyi=206630,x12968,,,
(3)公司策劃部選1200lnx+5000和═x3+1200兩個模型對銷量與售價的關(guān)系進行擬合,現(xiàn)得到以下統(tǒng)計值(如表格所示):
x3+1200 | ||
52446.95 | 122.89 | |
124650 | ||
相關(guān)指數(shù) | R | R |
相關(guān)指數(shù):R2=1.
(i)試比較R12,R22的大。ńo出結(jié)果即可),并由此判斷哪個模型的擬合效果更好;
(ii)根據(jù)(1)中所選的方案和(i)中所選的回歸模型,求該產(chǎn)品的售價x定為多少時,總利潤z可以達到最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的方程有唯一實數(shù)解,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com