【題目】已知函數(shù).
(1)當時,恒成立,求實數(shù)的取值范圍;
(2)證明:當時,函數(shù)有最小值,設最小值為,求函數(shù)的值域.
【答案】(1);(2)
【解析】分析:(1)原問題等價于對恒成立,設,求其最小值即可;
(2)求導得,記,,由(1)知在區(qū)間內單調遞增,從而得到當時,函數(shù)有最小值;,又因為.所以,從而易得函數(shù)的值域.
詳解:(1)因為對恒成立,
等價于對恒成立,設得
,故在上單調遞增,
當時,由上知,所以,即,
所以實數(shù)的取值范圍為;
(2)對求導得,
記,,
由(1)知在區(qū)間內單調遞增,又,
所以存在唯一正實數(shù),使得,
當時,,,函數(shù)在區(qū)間單調遞減;
時,,,函數(shù)在區(qū)間單調遞增;
所以在內有最小值,
由題設即.
又因為.所以.
根據(jù)(1)知, 在內單調遞增,,
所以.令,則
,函數(shù)在區(qū)間內單調遞增,
所以,
即函數(shù)的值域為.
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線:的焦點,過的動直線交拋物線于,兩點.當直線與軸垂直時,.
(1)求拋物線的方程;
(2)設直線的斜率為1且與拋物線的準線相交于點,拋物線上存在點使得直線,,的斜率成等差數(shù)列,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù).(是常數(shù),且()
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)當在處取得極值時,若關于的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(Ⅲ)求證:當時.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:
項目 | 男性 | 女性 | 總計 |
反感 | 10 | ||
不反感 | 8 | ||
總計 | 30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯(lián)表補充完整(直接寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關?
(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知傾斜角為的直線經(jīng)過拋物線:的焦點,與拋物線相交于、兩點,且.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點的兩條直線、分別交拋物線于點、和、,線段和的中點分別為、.如果直線與的斜率之積等于1,求證:直線經(jīng)過一定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣a|+|x|(a>0).
(1)若不等式f(x)﹣| x|≥4x的解集為{x|x≤1},求實數(shù)a的值;
(2)證明:f(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一項研究中,為盡快攻克某一課題,某生物研究所分別設立了甲、乙兩個研究小組同時進行對比試驗,現(xiàn)隨機在這兩個小組各抽取40個數(shù)據(jù)作為樣本,并規(guī)定試驗數(shù)據(jù)落在[495,510)之內的數(shù)據(jù)作為理想數(shù)據(jù),否則為不理想數(shù)據(jù).試驗情況如表所示
(1)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表;
(2)判斷是否有90%的把握認為抽取的數(shù)據(jù)為理想數(shù)據(jù)與對兩個研究小組的選擇有關;說明你的理由;(下面的臨界值表供參考)
(參考公式:其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列滿足:對于任意均為數(shù)列中的項,則稱數(shù)列為“ 數(shù)列”.
(1)若數(shù)列的前項和,求證:數(shù)列為“ 數(shù)列”;
(2)若公差為的等差數(shù)列為“ 數(shù)列”,求的取值范圍;
(3)若數(shù)列為“ 數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com