【題目】在一項(xiàng)研究中,為盡快攻克某一課題,某生物研究所分別設(shè)立了甲、乙兩個(gè)研究小組同時(shí)進(jìn)行對(duì)比試驗(yàn),現(xiàn)隨機(jī)在這兩個(gè)小組各抽取40個(gè)數(shù)據(jù)作為樣本,并規(guī)定試驗(yàn)數(shù)據(jù)落在[495,510)之內(nèi)的數(shù)據(jù)作為理想數(shù)據(jù),否則為不理想數(shù)據(jù).試驗(yàn)情況如表所示

(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表;

(2)判斷是否有90%的把握認(rèn)為抽取的數(shù)據(jù)為理想數(shù)據(jù)與對(duì)兩個(gè)研究小組的選擇有關(guān);說明你的理由;(下面的臨界值表供參考)

(參考公式:其中n=a+b+c+d)

【答案】(1)見解析;(2)見解析

【解析】

1)根據(jù)試驗(yàn)數(shù)據(jù)落在[495,510)之內(nèi)的數(shù)據(jù)作為理想數(shù)據(jù)完成2×2列聯(lián)表可得答案;

(2)根據(jù)公式計(jì)算觀測(cè)值,對(duì)照臨界表可得出結(jié)論.

(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成2×2列聯(lián)表,如下;

甲組

乙組

合計(jì)

理想數(shù)據(jù)

30

36

66

不理想數(shù)據(jù)

10

4

14

合計(jì)

40

40

80

(2)由表中數(shù)據(jù)計(jì)算的觀測(cè)值為

,

所以有90%的把握認(rèn)為抽取的數(shù)據(jù)為理想數(shù)據(jù)與對(duì)兩個(gè)研究小組的選擇有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人去某地務(wù)工,其工作受天氣影響,雨天不能出工,晴天才能出工.其計(jì)酬方式有兩種,方式一:雨天沒收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要選擇其中一種計(jì)酬方式,并打算在下個(gè)月(天)內(nèi)的晴天都出工,為此三人作了一些調(diào)查,甲以去年此月的下雨天數(shù)(天)為依據(jù)作出選擇;乙和丙在分析了當(dāng)?shù)亟?/span>年此月的下雨天數(shù)()的頻數(shù)分布表(見下表)后,乙以頻率最大的值為依據(jù)作出選擇,丙以的平均值為依據(jù)作出選擇.

8

9

10

11

12

13

頻數(shù)

3

1

2

0

2

1

(Ⅰ)試判斷甲、乙、丙選擇的計(jì)酬方式,并說明理由;

(Ⅱ)根據(jù)統(tǒng)計(jì)范圍的大小,你覺得三人中誰(shuí)的依據(jù)更有指導(dǎo)意義?

(Ⅲ)以頻率作為概率,求未來三年中恰有兩年,此月下雨不超過天的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)。

I)若曲線在點(diǎn)(0)處的切線為x軸,求a的值;

II)求函數(shù)[0,l]上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無(wú)限精細(xì)的結(jié)構(gòu)。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個(gè)黑色三角形內(nèi)去掉小三角形則當(dāng)時(shí),該黑色三角形內(nèi)共去掉( )個(gè)小三角形

A. 81 B. 121 C. 364 D. 1093

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若處取得極值,求處的切線方程;

(2)討論的單調(diào)性;

(3)若函數(shù)上無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的周期為3的奇函數(shù),且當(dāng)時(shí),,則方程在區(qū)間上的解得個(gè)數(shù)是( )

A. B. 6 C. 7 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動(dòng)”已經(jīng)成為當(dāng)下熱門的健身方式,韓梅梅的微信朋友圈內(nèi)有800為好友參與了“微信運(yùn)動(dòng)”.他隨機(jī)抽取了50為微信好友(男、女各25人),統(tǒng)計(jì)其在某一天的走路步數(shù).其中女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

12860 8320 10231 6734 7323 8430 3200 4543 11123 9860

8753 6454 7292 4850 10222 9734 7944 9117 6421 2980

1123 1786 2436 3876 4326

男性好友走路步數(shù)情況可以分為五個(gè)類別(0-2000步)(說明:“0-2000”表示大于等于0,小于等于2000,下同),(2001-5000)、(5001-8000)、(8001-10000步)、(10001步及以上),且三中類型的人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的柱形圖.

若某人一天的走路步數(shù)超過8000步則被系統(tǒng)評(píng)定為“積極型”,否則被系統(tǒng)評(píng)定為“懈怠型”.

(1)若以韓梅梅抽取的好友當(dāng)天行走步數(shù)的頻率分布來估計(jì)所有微信好友每日走路步數(shù)的概率分布,請(qǐng)估計(jì)韓梅梅的微信好友圈里參與“微信運(yùn)動(dòng)”的800名好友中,每天走路步數(shù)在5001-10000步的人數(shù);

(2)請(qǐng)根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

積極型

懈怠型

總計(jì)

25

25

總計(jì)

30

(3)若從韓梅梅當(dāng)天選取的步數(shù)大于10000的好友中按男女比例分層選取5人進(jìn)行身體狀況調(diào)查,然后再?gòu)倪@5位好友中選取2人進(jìn)行訪談,求至少有一位女性好友訪談的概率.

參考公式:,其中.

臨界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.

(1)證明:坐標(biāo)原點(diǎn)O在圓M上;

(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.

【答案】(1)見解析;(2)

【解析】(1)證明略;(2)直線的方程為,圓的方程為.或直線的方程為,圓的方程為

試題分析:(1)設(shè)出點(diǎn)的坐標(biāo),聯(lián)立直線與拋物線的方程,由斜率之積為可得,即得結(jié)論;(2)結(jié)合(1)的結(jié)論求得實(shí)數(shù)的值,分類討論即可求得直線的方程和圓的方程.

試題解析:(1)設(shè),.

可得,則.

,故.

因此的斜率與的斜率之積為,所以.

故坐標(biāo)原點(diǎn)在圓上.

(2)由(1)可得.

故圓心的坐標(biāo)為,圓的半徑.

由于圓過點(diǎn),因此,故,

由(1)可得.

所以,解得.

當(dāng)時(shí),直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓的方程為.

當(dāng)時(shí),直線的方程為,圓心的坐標(biāo)為,圓的半徑為,圓 的方程為.

【名師點(diǎn)睛】直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;在解決直線與拋物線的位置關(guān)系時(shí),要特別注意直線與拋物線的對(duì)稱軸平行的特殊情況.中點(diǎn)弦問題,可以利用點(diǎn)差法,但不要忘記驗(yàn)證或說明中點(diǎn)在曲線內(nèi)部.

型】解答
結(jié)束】
21

【題目】已知函數(shù)

(1)若,求a的值;

(2)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案