已知是奇函數(shù),當(dāng)時(shí),     .
-2
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202940040447.png" style="vertical-align:middle;" />為奇函數(shù),所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某奇石廠為適應(yīng)市場(chǎng)需求,投入98萬(wàn)元引進(jìn)我國(guó)先進(jìn)設(shè)備,并馬上投入生產(chǎn).第一年需各種費(fèi)用12萬(wàn)元,從第二年開始,每年所需費(fèi)用會(huì)比上一年增加4萬(wàn)元.而每年因引入該設(shè)備可獲得年利潤(rùn)為50萬(wàn)元.請(qǐng)你根據(jù)以上數(shù)據(jù),解決以下問題:
(1)引進(jìn)該設(shè)備多少年后,該廠開始盈利?
(2)引進(jìn)該設(shè)備若干年后,該廠提出兩種處理方案:
第一種:年平均利潤(rùn)達(dá)到最大值時(shí),以26萬(wàn)元的價(jià)格賣出.
第二種:盈利總額達(dá)到最大值時(shí),以8萬(wàn)元的價(jià)格賣出.問哪種方案較為合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí),,且,則不等式的解集( )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為定義在上的奇函數(shù),當(dāng)時(shí), 為常數(shù)),則 =(    )
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201621101317.png" style="vertical-align:middle;" />,若存在閉區(qū)間,使得函數(shù)滿足:①內(nèi)是單調(diào)函數(shù);②上的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201621225535.png" style="vertical-align:middle;" />,則稱區(qū)間的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有                 (      )
;                          ②;
;       ④
A.①②③④B.①②④C.①③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)=x3-x,則函數(shù)y=f(x)的圖像在區(qū)間[0,6]上與x軸的交點(diǎn)個(gè)數(shù)為                 (   )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)(1),  (2),(3),(4).其中是偶函數(shù)的個(gè)數(shù)為                             (  )
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是定義在上的奇函數(shù),對(duì)任意的R都有成立,  則=(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是上的奇函數(shù),,當(dāng)時(shí)
值是           .

查看答案和解析>>

同步練習(xí)冊(cè)答案