【題目】“互聯(lián)網(wǎng)+”是“智慧城市”的重要內容,A市在智慧城市的建設中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費WiFi為了解免費WiFi在A市的使用情況,調查機構借助網(wǎng)絡進行了問卷調查,并從參與調查的網(wǎng)友中抽取了200人進行抽樣分析,得到如下列聯(lián)表(單位:人):
經(jīng)常使用免費WiFi | 偶爾或不用免費WiFi | 合計 | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有90%的把握認為A市使用免費WiFi的情況與年齡有關;
(2)將頻率視為概率,現(xiàn)從該市45歲以上的市民中用隨機抽樣的方法每次抽取1人,共抽取3次.記被抽取的3人中“偶爾或不用免費WiFi”的人數(shù)為X,若每次抽取的結果是相互獨立的,求X的分布列,數(shù)學期望E(X)和方差D(X).附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)作出函數(shù)的圖像;
(2)根據(jù)(1)所得圖像,填寫下面的表格:
性質 | 定義域 | 值域 | 單調性 | 奇偶性 | 零點 |
(3)關于的方程恰有6個不同的實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左、右焦點分別為,左項點為上頂點為.已知.
(1)求橢圓的離心率;
(2)設為橢圓上在第一象限內一點,射線與橢圓的另一個公共點為,滿足,直線交軸于點,的面積為.
(i)求橢圓的方程.
(ii)過點作不與軸垂直的直線交橢圓于(異于點)兩點,試判斷的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當時,求函數(shù)的單調區(qū)間;
(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù),關于的方程,給出下列結論
①存在這樣的實數(shù),使得方程有3個不同的實根
②不存在這樣的實數(shù),是的方程有4個不同的實根
③存在這樣的實數(shù),是的方程有5個不同的實根
④不存在這樣的實數(shù),是的方程有6個不同的實根
其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點處的切線與直線平行,求與滿足的關系;
(2)當時,討論的單調性;
(3)當時,對任意的,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,是橢圓:上的點,過點的直線的方程為.
(1)求橢圓的離心率;
(2)當時,
(i)設直線與軸、軸分別相交于,兩點,求的最小值;
(ii)設橢圓的左、右焦點分別為,,點與點關于直線對稱,求證:點,,三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】車間將10名技工平均分成甲乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內加工的合格零件平均數(shù)都為10.
(1)分別求出,的值;
(2)質檢部門從該車間甲乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢測,若兩人加工的合格零件個數(shù)之和大于17,則稱該車間“質量合格”,求該車間“質量合格”的概率;
(3)根據(jù)以上莖葉圖和你所學的統(tǒng)計知識,分析兩組技工的整體加工水平及穩(wěn)定性.
(注:方差,其中為數(shù)據(jù),,…,的平均數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(卷號)2040818101747712
(題號)2050752239689728
(題文)
在平面直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知直線的參數(shù)方程為(為參數(shù)),曲線C的極坐標方程為.
(1)求曲線的直角坐標方程和直線的普通方程;
(2)設直線與曲線交于兩點,點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com