【題目】隨著生活水平和消費(fèi)觀念的轉(zhuǎn)變,“三品一標(biāo)”(無公害農(nóng)產(chǎn)品、綠色食品、有機(jī)食品和農(nóng)產(chǎn)品地理標(biāo)志)已成為不少人的選擇,為此某品牌植物油企業(yè)成立了有機(jī)食品快速檢測室,假設(shè)該品牌植物油每瓶含有機(jī)物A的概率為p(0<p<1),需要通過抽取少量油樣化驗(yàn)來確定該瓶油中是否含有有機(jī)物A,若化驗(yàn)結(jié)果呈陽性則含A,呈陰性則不含A.若多瓶該種植物油檢驗(yàn)時(shí),可逐個(gè)抽樣化驗(yàn),也可將若干瓶植物油的油樣混在一起化驗(yàn),僅當(dāng)至少有一瓶油含有有機(jī)物A時(shí)混合油樣呈陽性,若混合油樣呈陽性,則該組植物油必須每瓶重新抽取油樣并全部逐個(gè)化驗(yàn).
(1)若 ,試求3瓶該植物油混合油樣呈陽性的概率;
(2)現(xiàn)有4瓶該種植物油需要化驗(yàn),有以下兩種方案: 方案一:均分成兩組化驗(yàn);方案二:混在一起化驗(yàn);請問哪種方案更適合(即化驗(yàn)次數(shù)的期望值更。⒄f明理由.

【答案】
(1)解:設(shè)X為3瓶該植物油中油樣呈陽性的瓶數(shù),

所求的概率為 ,

所以3瓶該種植物油的混合油樣呈陽性的概率為


(2)解:設(shè)q=1﹣p,則0<q<1.

方案一:設(shè)所需化驗(yàn)的次數(shù)為Y,則Y的所有可能取值為2,4,6次,

方案二:設(shè)所需化驗(yàn)的次數(shù)為Z,則Z的所有可能取值為1,5次,P(Z=1)=q4,P(Z=5)=1﹣q4,E(Z)=1×q4+5×(1﹣q4)=5﹣4q4

因?yàn)镋(Y)﹣E(Z)=6﹣4q2﹣(5﹣4q4)=(2q2﹣1)2≥0,即E(Y)≥E(Z),

所以方案二更適合


【解析】(1)設(shè)X為3瓶該植物油中油樣呈陽性的瓶數(shù),利用相互對立事件的概率計(jì)算公式可得所求的概率為P(X≥1)=1﹣P(X=0).(2)設(shè)q=1﹣p,則0<q<1.方案一:設(shè)所需化驗(yàn)的次數(shù)為Y,則Y的所有可能取值為2,4,6次,利用二項(xiàng)分布列的概率計(jì)算公式及其數(shù)學(xué)期望計(jì)算公式即可得出.方案二:設(shè)所需化驗(yàn)的次數(shù)為Z,則Z的所有可能取值為1,5次,P(Z=1)=q4 , P(Z=5)=1﹣q4 , E(Z)=1×q4+5×(1﹣q4).進(jìn)而得出數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,,的中點(diǎn).

(1)求證:;

(2)求證:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為6,離心率為 ,F(xiàn)2為橢圓的右焦點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)M在圓x2+y2=8上,且M在第一象限,過M作圓x2+y2=8的切線交橢圓于P,Q兩點(diǎn),判斷△PF2Q的周長是否為定值并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=lnx,其中e為自然對數(shù)的底數(shù).
(1)求函數(shù)y=f(x)g(x)在x=1處的切線方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ為常數(shù),求證:λ>e;
(3)若對任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 ,函數(shù)f'(x)的圖象的一個(gè)對稱中心是 ,則f(x)的最小正周期是(
A.
B.
C.π
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是(
A.3024
B.1007
C.2015
D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響了的綜合指標(biāo).根據(jù)相關(guān)報(bào)道提供的全網(wǎng)傳播2015年某全國性大型活動的省級衛(wèi)視新聞臺融合指數(shù)的數(shù)據(jù),對名列前20名的省級衛(wèi)視新聞臺的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示.

組號

分組

頻數(shù)

1


2

2


8

3


7

4


3

)現(xiàn)從融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在的概率;

)根據(jù)分組統(tǒng)計(jì)表求這20省級衛(wèi)視新聞臺的融合指數(shù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A. 命題“若,則”的否命題為“若,則”;

B. 命題“”的否定是“”;

C. 命題“若x=y,則”的逆否命題為真命題;

D. ” 是“”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于實(shí)數(shù)x的一元二次方程

a是從區(qū)間中任取的一個(gè)整數(shù),b是從區(qū)間中任取的一個(gè)整數(shù),求上述方程有實(shí)根的概率.

a是從區(qū)間任取的一個(gè)實(shí)數(shù),b是從區(qū)間任取的一個(gè)實(shí)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊答案