【題目】在平面直角坐標系中,橢圓的離心率為,右頂點為,直線過原點,且點x軸的上方,直線分別交直線于點、.

1)若點,求橢圓的方程及ABC的面積;

2)若為動點,設直線的斜率分別為、.

試問是否為定值?若為定值,請求出;否則,請說明理由;

△AEF的面積的最小值.

【答案】(1 2

【解析】試題分析:(1)根據(jù)題意的離心率及點B的坐標,建立方程,求出a的值,即可求ABC的面積;(2為定值,證明,由(1)得,即可得到結(jié)論;設直線AB的方程為y=k1x-a),直線AC的方程為y=k2x-a),令x=a+1得,求出AEF的面積,結(jié)合的結(jié)論,利用基本不等式,可求AEF的面積的最小值

試題解析:(1)由題意得解得

橢圓的方程為……………………………………………………3

ABC的面積.………………………4

2為定值,下證之:

證明:設,則,且.………………5

………………………7

由離心率,得

所以,為定值.……………………………………………8

由直線的點斜式方程,得直線的方程為,直線的方程為.

,得, .

所以,AEF的面積…………………………10

由題意,直線的斜率. ,

于是, ,

當且僅當,即時取等號.………………………………11

所以,AEF的面積的最小值為.………12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為貫徹落實教育部等6部門《關(guān)于加快發(fā)展青少年校園足球的實施意見》,全面提高我市中學生的體質(zhì)健康水平,普及足球知識和技能,市教體局決定矩形春季校園足球聯(lián)賽,為迎接此次聯(lián)賽,甲同學選拔了20名學生組成集訓隊,現(xiàn)統(tǒng)計了這20名學生的身高,記錄如下表:

身高(

168

174

175

176

178

182

185

188

人數(shù)

1

2

4

3

5

1

3

1

(1)請計算20名學生的身高中位數(shù)、眾數(shù),并補充完成下面的莖葉圖;

(2)身高為185188的四名學生分別為,,,先從這四名學生中選2名擔任正副門將,請利用列舉法列出所有可能情況,并求學生入選正門將的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

)求滿足的概率;

三條線段的長分別為5求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC,角A,B,C的對邊分別為a,b,c,cos C.

(1)·,求c的最小值;

(2)設向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線的距離之和的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)寫出曲線的直角坐標方程;

2)已知直線軸的交點為,與曲線的交點為, ,若的中點為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 橢圓的離心率是,點在橢圓上, 設點分別是橢圓的右頂點和上頂點, 引橢圓的兩條弦、.

(1)求橢圓的方程;

(2)若直線的斜率是互為相反數(shù).

直線的斜率是否為定值?若是求出該定值, 若不是,說明理由;

、的面積分別為 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天氣預報顯示,在今后的三天中,每一天下雨的概率為40%,現(xiàn)用隨機模擬的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0--9之間整數(shù)值的隨機數(shù),并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3個隨機數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機數(shù)

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

則這三天中恰有兩天下雨的概率近似為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校隨機抽取部分新生調(diào)查其上學路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學路上所需時間的范圍是,樣本數(shù)據(jù)分組為, , ,

(1)求直方圖中的值;

(2)如果上學路上所需時間不少于40分鐘的學生可申請在學校住宿,請估計學校1000名新生中有多少名學生可以申請住宿.

查看答案和解析>>

同步練習冊答案