【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)寫出曲線的直角坐標(biāo)方程;

2)已知直線軸的交點為,與曲線的交點為, ,若的中點為,求的長.

【答案】1;(2.

【解析】試題分析:(1)利用曲線的極坐標(biāo)與直角坐標(biāo)的互化公式,即可化簡得到曲線的直角坐標(biāo)方程;(2)的參數(shù)方程代入曲線的直角坐標(biāo)方程得: ,設(shè)點, , 對應(yīng)的參數(shù)分別為, ,則,即可求解的長.

試題解析:(1)曲線的直角坐標(biāo)方程為

2的坐標(biāo)為,將的參數(shù)方程代入曲線的直角坐標(biāo)方程得: ,

設(shè)點, , 對應(yīng)的參數(shù)分別為, , ,則, ,

的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,且.

(1)求的通項公式;

(2)若等比數(shù)列滿足,求的前項和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 表示導(dǎo)函數(shù).

(1)當(dāng)時,求函數(shù)在點處的切線方程;

(2)討論函數(shù)的單調(diào)區(qū)間;

(3)對于曲線上的不同兩點,求證:存在唯一的,使直線的斜率等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為

(1)若為等邊三角形,求橢圓的方程;

(2)若橢圓的短軸為2,過點的直線與橢圓相交于、兩點,且求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,右頂點為,直線過原點,且點x軸的上方,直線分別交直線于點、.

1)若點,求橢圓的方程及ABC的面積;

2)若為動點,設(shè)直線的斜率分別為.

試問是否為定值?若為定值,請求出;否則,請說明理由;

△AEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a=(1,2),b=(-2,n),ab的夾角是45°.

(1) 求b;

(2) cb同向,且aca垂直,求向量c的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,為棱上一點,為線段上一點,.

)證明:平面;

)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC﹣A1B1C1是底面邊長為2,高為的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).

(Ⅰ)證明:PQ∥A1B1

(Ⅱ)當(dāng)時,在圖中作出點C在平面ABQP內(nèi)的正投影F(說明作法及理由),并求四面體CABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體,則下列說法不正確的是(

A.若點在直線上運動時,三棱錐的體積不變

B.若點是平面上到點距離相等的點,則點的軌跡是過點的直線

C.若點在直線上運動時,直線與平面所成角的大小不變

D.若點在直線上運動時,二面角的大小不變

查看答案和解析>>

同步練習(xí)冊答案