【題目】如圖,ABC﹣A1B1C1是底面邊長(zhǎng)為2,高為的正三棱柱,經(jīng)過(guò)AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).
(Ⅰ)證明:PQ∥A1B1;
(Ⅱ)當(dāng)時(shí),在圖中作出點(diǎn)C在平面ABQP內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體CABF的體積.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)正投影見(jiàn)解析,.
【解析】
試題分析:(I)由正三棱柱的性質(zhì)可以知道,上下兩個(gè)底面平行,由兩個(gè)平面平行的性質(zhì)定理可得,由此能證明;(II) 當(dāng)時(shí),分別是的中點(diǎn), 在等腰梯形中,,平面,即,所以點(diǎn)是在平面內(nèi)的正投影,即得.
試題解析:(I)∵平面平面,平面平面,平面平面,,,又.
(Ⅱ)點(diǎn)是中點(diǎn),理由如下:
當(dāng)時(shí),分別是的中點(diǎn),連接和, 因?yàn)?/span>
是正三棱柱,所以,
取中點(diǎn),連接在等腰梯形中,,
連接中,,
平面ABF,即,
所以點(diǎn)是在平面內(nèi)的正投影。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記表示中的最大值,如,已知函數(shù).
(1)求函數(shù)在上的值域;
(2)試探討是否存在實(shí)數(shù), 使得對(duì)恒成立?若存在,求的取值范圍;
若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)已知直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為, ,若的中點(diǎn)為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自點(diǎn)A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天氣預(yù)報(bào)顯示,在今后的三天中,每一天下雨的概率為40%,現(xiàn)用隨機(jī)模擬的方法估計(jì)這三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0--9之間整數(shù)值的隨機(jī)數(shù),并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3個(gè)隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù)
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
則這三天中恰有兩天下雨的概率近似為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(4,-3),B(2,-1)和直線l:4x+3y-2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點(diǎn)P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點(diǎn)P滿足|PA|=|PB|且點(diǎn)P到直線l的距離為2的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中裝有編號(hào)為的3個(gè)黑球和編號(hào)為的2個(gè)紅球,從中任意摸出2個(gè)球.
(Ⅰ)寫出所有不同的結(jié)果;
(Ⅱ)求恰好摸出1個(gè)黑球和1個(gè)紅球的概率;
(Ⅲ)求至少摸出1個(gè)紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求函數(shù)在處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年天貓五一活動(dòng)結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動(dòng)中消費(fèi)超過(guò)3000元的人群的年齡狀況,隨機(jī)在當(dāng)?shù)叵M(fèi)超過(guò)3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, , 對(duì)應(yīng)的小矩形的面積分別是,且.
(1)以頻率作為概率,若該地區(qū)五一消費(fèi)超過(guò)3000元的有30000人,試估計(jì)該地區(qū)在五一活動(dòng)中消費(fèi)超過(guò)3000元且年齡在的人數(shù);
(2)計(jì)算在五一活動(dòng)中消費(fèi)超過(guò)3000元的消費(fèi)者的平均年齡;
(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com