【題目】記表示中的最大值,如,已知函數(shù).
(1)求函數(shù)在上的值域;
(2)試探討是否存在實數(shù), 使得對恒成立?若存在,求的取值范圍;
若不存在,說明理由.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)題意,明確給定范圍上的的表達式,然后求值域;(2)根據(jù)題意,明確給定范圍上的的表達式,然后恒成立問題就轉(zhuǎn)化為最值問題.
試題解析:(1)設,.............1分
令,得遞增;令,得遞減,.................2分
∴,∴,.......................3分
即,∴.............4分
故函數(shù)在上的值域為...........................5分
(2)①當時,
∵,∴,∴,∴.................................................. 6分
若,對恒成立,則對恒成立,
設,則,
令,得遞增;令,得遞減.
∴,∴,∴,∵,∴....9分
②當時,由(1)知,對恒成立,
若對恒成立,則對恒成立,
即對恒成立,這顯然不可能.
即當時,不滿足對恒成立,.........................11分
故存在實數(shù),使得對恒成立,且的取值范圍為.......12分
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標原點,若橢圓與曲線的交點分別為(下上),且兩點滿足.
(1)求橢圓的標準方程;
(2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線在軸、軸上的截距分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位每天的用電量(度)與當天最高氣溫(℃)之間具有線性相關(guān)關(guān)系,下表是該單位隨機統(tǒng)計4天的用電量與當天最高氣溫的數(shù)據(jù).
最高氣溫(℃) | 26 | 29 | 31 | 34 |
用電量 (度) | 22 | 26 | 34 | 38 |
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程(其中);
(Ⅱ)試預測某天最高氣溫為33℃時,該單位當天的用電量(精確到1度).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), 表示導函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)討論函數(shù)的單調(diào)區(qū)間;
(3)對于曲線上的不同兩點,求證:存在唯一的,使直線的斜率等于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長為2,過點的直線與橢圓相交于、兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABC﹣A1B1C1是底面邊長為2,高為的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ,設C1P=λC1A1(0<λ<1).
(Ⅰ)證明:PQ∥A1B1;
(Ⅱ)當時,在圖中作出點C在平面ABQP內(nèi)的正投影F(說明作法及理由),并求四面體CABF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com